
1/2

January 3, 2018

Why are the module timestamps in Windows 10 so
nonsensical?

devblogs.microsoft.com/oldnewthing/20180103-00

Raymond Chen

One of the fields in the Portable Executable (PE) header is called TimeDateStamp . It’s a 32-

bit value representing the time the file was created, in the form of seconds since January 1,

1970 UTC. But starting in Windows 10, those timestamps are all nonsense. If you look at the

timestamps of various files, you’ll see that they appear to be random numbers, completely

unrelated to any timestamp. What’s going on?

One of the changes to the Windows engineering system begun in Windows 10 is the move

toward reproducible builds. This means that if you start with the exact same source code,

then you should finish with the exact same binary code.

There are lots of things that hamper reproducibility. One source is the language itself. For

example, anonymous namespaces may not have a programmatically-accessible name, but

since the objects within it have external linkage, they need to have a name nonetheless, and

the name must be different for different source files. How does it ensure the names are

unique? Does the compiler use a random number generator to generate these names? Is it a

hash of the file name?

Another source is the compiler’s internal code generation algorithms. For example, if a

compiler chooses between two optimizations depending how much RAM is available, or how

powerful the processor is, then that prevents the result from being reproducible because two

systems with different hardware configurations may end up producing different outputs. Or

if the optimizer has a failsafe switch that abandons an operation if the algorithm is still

running after 500ms. Or if the optimizer uses a non-deterministic register allocation

strategy. Or if the compiler uses a deterministic algorithm (“sort all local variables”) but uses

a non-determinstic criterion (“… by the heap address of the data structure we use to keep

track of each variable.”).

There are also inputs to the system outside the compiler that hamper reproducibility. For

example, the full path to the file being compiled will show up in __FILE__ preprocessor

directives, which will cause problems when built from different machines with different

names for the root directory that holds the source code. (Or even from the same machine

https://devblogs.microsoft.com/oldnewthing/20180103-00/?p=97705
https://www.researchgate.net/publication/256446775_New_Non-deterministic_Approaches_for_Register_Allocation

2/2

with two copies of the source code.) There may be files auto-generated by the build process

that go into the compiler (for example, the output of compiler-compilers); those need to be

deterministic too.

Timestamps are another source of non-determinism. Even if all the inputs are identical, the

outputs will still be different because of the timestamps.

Okay, at least we can fix the issue with the file format. Setting the timestamp to be a hash of

the resulting binary preserves reproducibility.

“Okay, but why not set the file timestamp to the the timestamp of the source code the binary

was created from? That way, it’s still a timestamp at least.” That still breaks reproducibility,

because that means that touching a file without making any changes will result in a change in

binary output.

Remember what the timestamp is used for: It’s used by the module loader to determine

whether bound imports should be trusted. We’ve already seen cases where the timestamp is

inaccurate. For example, if you rebind a DLL, then the rebound DLL has the same timestamp

as the original, rather than the timestamp of the rebind, because you don’t want to break the

bindings of other DLLs that bound to your DLL.

So the timestamp is already unreliable.

The timestamp is really a unique ID that tells the loader, “The exports of this DLL have not

changed since the last time anybody bound to it.” And a hash is a reproducible unique ID.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

