
1/2

March 7, 2018

When MSDN says NULL, is it okay to use nullptr?
devblogs.microsoft.com/oldnewthing/20180307-00

Raymond Chen

In various places, MSDN will talk about the behavior corresponding to the case where a

handle type has the value NULL . A customer wanted to know whether it was safe to use

nullptr in such cases, or whether they have to use NULL .

Although the programming languages used by MSDN for documenting Windows are

putatively C and C++, MSDN understands that a lot of people write code for Windows in

other languages, and therefore it tries to avoid relying on language subtleties.

Esoteric definitions for the term NULL is one of those language subtleties.

Formally, the C and C++ languages permit the following definitions for the NULL macro:

NULL 0 (void*)0 nullptr

C allowed allowed not allowed¹

C++ allowed not allowed² allowed

If NULL is defined as (void*)0 in C or as nullptr in C++, then it can be assigned only

to a pointer type. And since MSDN cannot control how the C and C++ header files define

NULL , it needs to work with any definition that is permitted by the corresponding standards.

Which means that saying NULL implies that the underlying type is a pointer type.

Therefore, you are welcome to write nullptr instead of NULL if you’re writing C++ code.

You’re also welcome to write anything else that produces a null pointer, such as

HMUMBLE h1 = HMUMBLE();
HMUMBLE h2 = HMUMBLE{};
HMUMBLE h3 = HMUMBLE(0);
HMUMBLE h4 = (HMUMBLE)0;
HMUMBLE h5 = 3 - 3;

But most people would probably prefer you to write NULL or nullptr .

https://devblogs.microsoft.com/oldnewthing/20180307-00/?p=98175
https://blogs.msdn.microsoft.com/oldnewthing/20050628-07/?p=35183

2/2

As noted, MSDN understands that a significant portion of its readership is not fluent in the

subtleties of C and C++. When it writes NULL , it means the obvious thing: A null pointer.

You can translate that into the appropriate construction for the language you are using. For

example, for C#, you can use null , or if you are operating in raw IntPtr s, you can use

IntPtr.Zero .

Bonus chatter: When MSDN says NULL , is it okay to use 0 ? Yes, but you probably don’t

want to. Using 0 as a null pointer constant is permitted by the C and C++ languages for

backward compatbility reasons, but it’s not considered modern style.

Bonus bonus chatter: I’m told that the Visual C++ folks occasionally entertain the

possibility of changing the definition of NULL to nullptr , which is permitted by the

standard. However, this ends up breaking a lot of code which assumed that NULL is an

integral constant evaluating to zero. For example:

void foo(char* p)
{
 char c = NULL; // would not work if NULL were defined as nullptr
 *p = NULL; // would not work if NULL were defined as nullptr
 ...
}

Although that code is technically already broken, it manages to work if NULL is defined as

0 , and updating the definition in the language header files would break existing (albeit

poorly-written) code.

¹ C does not have the nullptr keyword.

² C++ does not allow NULL to be defined as (void*)0 because C++ does not permit

implicit conversion from void* to arbitrary T* .

int* p = (void*)0; // allowed in C but not C++

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

