
1/8

March 16, 2018

Stop cherry-picking, start merging, Part 5: Exploiting the
three-way merge

devblogs.microsoft.com/oldnewthing/20180316-00

Raymond Chen

Last time, we answered some questions based on what we know about the recursive merge

algorithm. Today, we’ll answer questions based on what we know about the three-way merge

algorithm.

After choosing a merge base (possibly by manufacturing one via the recursive merge

algorithm), the three-way merge algorithm takes the three versions identified by the merge

base, the source head commit, and the destination head commit. It then identifies the

changes in the two head commits relative to the merge base and tries to reconcile them.

The important detail here is what doesn’t participate in the merge: Everything else.

In particular, any commits leading up to the head commits have no effect. And you can take

advantage of this when answering the next few questions.

What if I already made the fix in my feature branch by committing directly to it,

rather than creating a patch branch? Can I create a patch branch retroactively?

Yes, you can create a patch branch retroactively. Suppose you are in this situation:

 apple

 M1 master

apple

A

 F1 F1a feature

 apple berry

https://devblogs.microsoft.com/oldnewthing/20180316-00/?p=98255
https://devblogs.microsoft.com/oldnewthing/20180315-00/?p=98245

2/8

Starting from a common commit A, you fork off a feature branch and commit a change F1.

Meanwhile, the master branch commits a change M1. You then discover a terrible problem in

the feature branch and apply an emergency fix F1a to the feature branch. Further

investigation reveals that this terrible problem also exists in the master branch. How do you

get the fix into the master branch without running the risk of a cherry-pick disaster?

Go ahead and create your patch branch like before, and merge it into both the master and

feature branches.

 apple berry

 M1 M2 master

apple berry

A P patch

 F1 F1a F2 feature

 apple berry berry

We created a new branch called patch based on the common ancestor commit A, and cherry-

picked our fix F1a to the patch branch as commit P. We then merged commit P into the

master branch, and also into the feature branch, producing commits M2 and F2, respectively.

The merge into the master branch as M2 propagates the fix to the master branch, and the

merge into the feature branch as F2 has no code effect because the fix is already in the feature

branch. However, the merge into the feature branch is a crucial step, because it establishes

commit P as the new common ancestor.

Observe that as far as the three commits involved in the merge are concerned, everything

look the same as if you had made the fix in the patch branch originally. The fix is in the patch

branch and in the heads of the master and feature branches. The feature branch can continue

making changes, possibly to the same file, and that will be correctly detected as a change in

the feature branch.

From a merge-theoretical point of view, you can use your thumb and cover up commit F1a,

because that commit doesn’t participate in the three-way merge:

 apple berry

 M1 M2 master

3/8

apple berry

A P patch

 F1 F2 feature

 apple berry

And then you see that this diagram is the same as the diagram we had when the change

originated in the patch branch.

How can I verify that a merge carried no code change?

If you have committed the merge locally, then you can run local git commands to get your

answer. If you just want a yes/no answer as to whether the most recent commit carried no

code change, you can see whether the trees are the same.

git diff-tree HEAD

If there is no output, then the trees are the same, which means that there was no code

change.

If you don’t trust git diff-tree , you can compare the trees manually:

git rev-parse HEAD^{tree} HEAD~^{tree}

(If you are using cmd.exe , then you’ll have to double the ^ characters because ^ is the

command prompt’s escape character.)

If you want to see the differences, you can use git diff HEAD~ HEAD to view them.

If you use an online service to manage pull requests, then you’ll have to consult your online

service’s documentation to see if there’s a way to preview the merge commit and diff it

against the parent. (We’ll pick up this topic in a future installment.)

What if I already made the fix in my feature branch by committing directly to it,

and then I cherry-picked the change into the master branch? Can I create a patch

branch retroactively?

Yes, you can still create a patch branch retroactively. This is just an extension of the case

where you want to retroactively pull the commit back from the feature branch, except this

time you’re retroactively pulling the commit back from both branches:

 apple berry berry

https://devblogs.microsoft.com/oldnewthing/20060517-00/?p=31173

4/8

 M1 M1a M2 master

apple berry

A P patch

 F1 F1a F2 feature

 apple berry berry

The analysis is the same: The only commits that participate in the three-way merge are the

common merge base P and the heads of the master and feature branches.

What if I already made the fix in my feature branch by committing directly to it,

and then I cherry-picked the change into the master branch, and I already made

further changes in both branches, including a conflicting change in my feature

branch? Can I create a patch branch retroactively?

Yes, you can still create the patch branch retroactively, but you have to be a bit careful

because you want the merge into the feature branch to contain no code changes; the merge is

for bookkeeping purposes only.

 apple berry berry berry

 M1 M1a M2 M3 master

apple berry

A P patch

 F1 F1a F2 F3 feature

 apple berry cherry cherry

From the initial common commit A, the feature branch makes an unrelated commit F1, then

makes the fix F1a, and then makes a second commit F2 that alters the fix from berry to

cherry. Meanwhile, the main branch makes an unrelated commit M1, then cherry-picks the

fix M1a, and then makes another unrelated commit M2.

How do you connect the fix in the feature branch with its cherry-picked doppelgänger?

5/8

As before, create a patch branch from the common commit A and cherry-pick F1a into it. This

is the fix that you want to be considered as existing in both the master and feature branches.

Merge this branch into the master and feature branches, as usual. The merge into the master

branch will go cleanly because the master branch hasn’t made any changes that conflict with

the fix. However, the merge into the feature branch will encounter a merge conflict because

the feature branch continued and made a subsequent conflicting change F2.

When you get that merge conflict, specify that you want to keep the changes in the feature

branch and ignore the changes in the patch branch. In other words, you want this to be a no-

code-change merge. You can use the -s ours option to git merge to indicate that you

want no code changes from the merge; you are doing this only for bookkeeping purposes.

I use an online service to manage pull requests. How can I force the online

service to use the -s ours merge algorithm?

This is really a question for your online service. But let’s suppose that your online service

doesn’t let you customize the merge algorithm. How can you force it anyway?

You can do it by pre-merging the result in your pull request. Note that this means that you

will need two patch branches, one for each of the merge destinations.

 apple berry berry berry

 M1 M1a M2 M3 master

apple berry

A P patch-master

 apple

 ~P patch-feature

 F1 F1a F2 F3 feature

 apple berry cherry cherry

As is customary, we start with a common ancestor commit A. The feature branch makes an

unrelated commit F1, and then applies an important bug fix as commit F1a. The master

branch makes an unrelated change M1, and then cherry-picks the fix as commit M1a. Both

branches make additional changes: In the master branch, an unrelated commit M2, and in

the feature branch, a conflicting commit F2.

6/8

Now you want to retroactively connect the commit F1a with its cherry-pick commit M1a so

that when the master and feature branches merge, you don’t get a conflict (or worse, a silent

revert).

We start as before and create a patch branch from the common ancestor commit A, and

create a commit P that describes the commit that got cherry-picked. This branch merges

cleanly into the master branch with the cherry-picked version M1a. However, this branch

doesn’t merge cleanly into the feature branch made a conflicting commit F2, and your online

service service rejects the pull request due to the conflict.

To fix this, you need to make sure that the branch submitted to your online service has all the

conflicts pre-resolved. Create a new patch-feature branch from the patch branch you used for

the master branch, and in that patch-feature branch, revert commit P, producing commit ~P,

so that the patch-feature branch shows no net code change relative to the common ancestor

commit A.¹

Now that the patch-feature branch has no net change, it should merge cleanly into the feature

branch. There was no code change in the payload, but the reason for the merge wasn’t to pick

up a code change; it was to connect the master and feature branches via the shared commit P,

which becomes the new common ancestor for the future merge of the master and feature

branches.

Conclusion

Okay, we saw the sorts of problems that cherry-picks can create, from merge conflicts

(sometimes in unrelated branches) to silent reverts. In practice, people cherry-pick only

because they don’t have a better choice available. They would rather perform a partial merge

but git doesn’t support partial merges, so people feel that they have to cherry-pick. But I

showed that partial merges are possible after all! You just have to think about the graph the

right way: Instead of merging directly between branches, you create a helper branch that

contains the partial content and merge the helper branch into the desired destinations.

As we saw when we explored the recursive merge algorithm, if you expect that your change

will need to be cherry-picked to many other branches, you can stage a helper branch that is

based on a commit far back enough in time that everybody who would be interested in

cherry-picking the change will also have the commit your branch is based on. (In practice,

this means going back to the commit that introduced the change that you are trying to patch.)

If everybody merges from that helper branch rather than cherry-picking, then when all the

branches merge together, the helper branch will contribute to the merge base, and that

avoids the conflicts and other bad things.

My team applied the techniques in this series, and following the guidance herein reduced the

number of conflicts in a single merge from over 1500 files to only 20. This changed an

unmanageable merge to one that could be handled by contacting the person responsible for

https://devblogs.microsoft.com/oldnewthing/20180312-00/?p=98215
https://devblogs.microsoft.com/oldnewthing/20180313-00/?p=98225
https://devblogs.microsoft.com/oldnewthing/20180314-00/?p=98235
https://devblogs.microsoft.com/oldnewthing/20180315-00/?p=98245

7/8

each conflict and asking them to resolve it.

(Note: This series is only half-over, even though I wrote a Conclusion. So don’t worry: There’s

plenty of agony still to come.)

Footnote

¹ Another way to do this is to create a new branch named patch-feature from commit F2, and

then perform a git merge -s ours patch-master to create a no-code-change merge

from the patch-master branch. This results in a line from P2 to F2, which is harmless:

 apple berry berry berry

 M1 M1a M2 M3 master

apple berry

A P patch-master

 cherry

 P2 patch-feature

 F1 F1a F2 F3 feature

 apple berry cherry cherry

If you want to get rid of the superfluous line, you could use the --squash option, but I

would leave it because it makes it clearer what happened. (Otherwise, it will look like the

patch branch made a huge commit.)

Personally, I would use git commit-tree to construct commit P2. I’ll talk about the

magical powers of git commit-tree at some unspecified future point.

However you created the patch-feature branch, you can then create a pull request from the

patch-feature branch to the feature branch.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/20180319-00/?p=98265
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

8/8

