
1/3

March 29, 2018

What’s up with compare_exchange_weak anyway?
devblogs.microsoft.com/oldnewthing/20180329-00

Raymond Chen

Last time, I left you with a homework assignment: Watch this video on std::atomic.

At time code 33:03, the presenter notes the weak version of compare-exchange (which is

permitted to fail even if the value matches the expected value) and tries to reverse-engineer

what kind of hardware would require this operation, eventually settling on a NUMA

architecture where cross-node memory accesses can time out.

But there’s no need to speculate about something that exotic, because the answer is all

around us. In fact, it’s probably happening right now on a computer in the presenter’s pocket.

Most RISC processors do not have a compare-exchange instruction. Instead, they use a load

locked/store conditional pattern. This pattern is employed by the ARM architecture, and we

also saw it for Alpha AXP, and we’ll see it later for MIPS and PowerPC.

The load locked/store conditional pattern goes like this:

Issue a load locked instruction which reads a value from memory and instructs the

processor to monitor that location for writes from other processors.

Perform some computations.

Issue a store conditional instruction which writes a value to the same memory location

that was locked, provided the processor can prove that the memory has not been

written to in the interim.

The conditional store can fail if another processor has written to the memory, or memory on

the same cache line or other unit of monitoring granularity, or if the processor took an

interrupt.

On an ARM, a strong compare-exchange contains a loop because the only way that

compare_ exchange_ strong is permitted to fail is when the current value of the atomic

variable does not match the expected value. If the failure reason was because of contention,

then the strong version must perform an internal retry loop until the operation succeeds, or

until the failure condition is met.

https://devblogs.microsoft.com/oldnewthing/20180329-00/?p=98375
https://blogs.msdn.microsoft.com/oldnewthing/20180328-00/?p=98365
https://www.youtube.com/watch?v=ZQFzMfHIxng
https://www.youtube.com/watch?v=ZQFzMfHIxng&t=33m03s
https://www.youtube.com/watch?v=ZQFzMfHIxng&t=36m26s
https://blogs.msdn.microsoft.com/oldnewthing/20170817-00/?p=96835

2/3

 ; r0 is the proposed new value
 ; r1 is the expected old value
 ; r2 is the address of the atomic variable

retry:
 DMB ; data memory barrier
 LDREX r3, [r2] ; load current value and lock it
 CMP r3, r1 ; is it what we expected?
 BNE fail ; N: operation failed
 ; actual current value is in r3

 STREX r4, r0, [r2] ; try to store new value
 CBNZ r4, retry ; lost the lock, try again
 DMB ; data memory barrier

Consider the compare-exchange loop in the code sample in the presentation:

 do { new_n->next = old_h; }
 while (!head.compare_exchange_strong(old_h, new_n));

The compare_ exchange_ strong has an embedded loop, and it’s part of another loop.

So we have to generate two loops:

 ; r0 is new_n
 ; r1 is old_h
 ; r2 is the address of the atomic variable "head"

outer_loop:
 STR r1, [r0] ; new_n->next = old_h

retry:
 DMB ; data memory barrier
 LDREX r3, [r2] ; locked load of head
 CMP r3, r1 ; is it what we expected?
 BNE fail ; N: operation failed

 STREX r4, r0, [r2] ; try to store new value
 CBNZ r4, retry ; lost the lock, try again

 DMB ; data memory barrier

 ; succeeded - continue with code that comes after

 ...

 ; This code goes at the end of the function because ARM
 ; statically predicts forward-jumps as not-taken.
fail:
 DMB ; data memory barrier
 MOV r1, r3 ; old_h = current value of head
 B outer_loop ; restart the outer loop

3/3

The outer loop drives the loop written by the C++ programmer. The inner loop is the one

required by compare_ exchange_ strong .

The weak version avoids this nested loop:

 do { new_n->next = old_h; }
 while (!head.compare_exchange_weak(old_h, new_n));

With this version, the compiler can simply bail out at the first sign of trouble. It avoids

having to create a separate fail label and reduces register pressure because it doesn’t need

to carry the expected and actual values through the (no-longer present) inner loop.

 ; r0 is new_n
 ; r1 is old_h
 ; r2 is the address of the atomic variable "head"

outer_loop:
 STR r1, [r0] ; new_n->next = old_h

 MOV r3, r1 ; save old_h before we overwrite it
 DMB ; data memory barrier
 LDREX r1, [r2] ; locked load of head into old_h
 CMP r3, r1 ; is it what we expected?
 BNE outer_loop ; N: retry with revised old_h

 STREX r3, r0, [r2] ; try to store new value
 CBNZ r3, outer_loop ; lost the lock, try again

 DMB ; data memory barrier

 ; succeeded - continue with code that comes after

When should you prefer the strong version of compare-exchange as opposed to the weak

version? We’ll take up that question next time.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

