
1/2

March 30, 2018

How do I choose between the strong and weak versions
of compare-exchange?

devblogs.microsoft.com/oldnewthing/20180330-00

Raymond Chen

Last time, we left with the question of when you should prefer the strong version of compare-

exchange as opposed to the weak version.

It comes down to whether spurious failures are acceptable and how expensive they are.

In the example given in the presentation, the cost of a spurious failure is very low:

 do { new_n->next = old_h; }
 while (!head.compare_exchange_strong(old_h, new_n));

Recovering from a spurious failure is just updating a single variable and retrying the

operation. Removing the nested loop embedded in the strong compare-exchange simplifies

the outer loop.

On the other hand, if recovering from the failure requires a lot of work, such as throwing

away an object and constructing a new one, then you probably want to pay for the extra

retries inside the strong compare-exchange operation in order to avoid an expensive recovery

iteration.

And of course if there is no iteration at all, then a spurious failure could be fatal. Consider the

lock-free singleton construction pattern:

https://devblogs.microsoft.com/oldnewthing/20180330-00/?p=98395
https://devblogs.microsoft.com/oldnewthing/

2/2

std::atomic<Widget*> cachedWidget;

Widget* GetSingletonWidget()
{
Widget* widget = cachedWidget;
if (!widget) {
 widget = new(std::nothrow) Widget();
 if (widget) {
 Widget* previousWidget = nullptr;
 if (!cachedWidget.compare_exchange_strong(previousWidget, widget)) {
 // lost the race - destroy the redundant widget
 delete widget;
 widget = previousWidget;
 }
 }
}
return widget;
}

If we were to switch to compare_ exchange_ weak , then a spurious failure would mean

that the value of cachedWidget was nullptr , but we failed to exchange anyway. This

means that we would think that we lost the race against another thread and return the

previousWidget as the singleton. But in the case of a spurious failure, the

previousWidget will still be nullptr , causing the code to create a Widget, think it was

redundant, throw away the created Widget, and then return nullptr . This is bad news for

the Get Singleton Widget function.

Choosing between the strong and weak versions of compare-exchange requires you to

understand what your algorithm does in the case of a spurious failure.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

