
1/4

April 2, 2018

The MIPS R4000, part 1: Introduction
devblogs.microsoft.com/oldnewthing/20180402-00

Raymond Chen

Continuing in the “Raymond introduces you to a CPU architecture that Windows once

supported but no longer does” sort-of series, here we go with the MIPS R4000.

The MIPS R4000 implements the MIPS III architecture. It is a 64-bit processor, but

Windows NT used it in 32-bit mode. I’ll be focusing on the aspects of the processor relevant

to debugging user-mode programs on Windows NT. This means that I may skip over various

technical details on the assumption that the compiler knows what the rules are and won’t

(intentionally) generate code that violates them.

Throughout, I will say “MIPS” instead of “MIPS III architecture”. Some of the issues do not

apply to later versions of the architecture family, but I am focusing on MIPS III since that’s

what Windows NT used.

The MIPS is a RISC-style load-store processor: The only operations you can perform with

memory are load and store. There is no “add value to memory” instruction, for example. Each

instruction is 32 bits wide, and the program counter must be on an exact multiple of 4.

The processor can operate in either little-endian or big-endian mode; Windows NT uses

little-endian mode, and even though some instructions change behavior depending on

whether the processor is in big-endian or little-endian mode, I will discuss only the little-

endian case.

The architectural terminology for a 32-bit value is a word (w), and a 16-bit value is a

halfword (h). There’s also doubleword (d) for 64-bit values, but we won’t see it here because

we are focusing on the 32-bit mode of the processor.

The MIPS has 32 general-purpose integer registers, formally known as registers $0 through

$31, but which conventionally go by these names:

Register Mnemonic Meaning Preserved? Notes

$0 zero reads as zero Immutable Writes are ignored

https://devblogs.microsoft.com/oldnewthing/20180402-00/?p=98415

2/4

$1 at assembler
temporary

Volatile Helper for synthesized
instructions

$2 v0 value No On function exit, contains the
return value

$3 v1 value No High 32 bits of return value (for
64-bit values)

$4…$7 a0…a3 argument No On function entry, contains
function parameters

$8…$15 t0…t7 temporary No

$16…$23 s0…s7 saved Yes

$24…$25 t8…t9 temporary No

$26…$27 k0…k1 kernel No access Reserved for kernel use

$28 gp global pointer Yes Not used by 32-bit code

$29 sp stack pointer Yes

$30 s8 frame pointer Yes For functions with variable-
sized stacks

$31 ra return address Maybe

The zero register reads as zero, and writes to it are ignored.

The k0 and k1 registers are reserved for kernel use, and no well-written user-mode program

will use them.¹

Win32 requires that the sp and s8 registers be used for their stated purpose throughout the

entire function. If a function does not have a variable-sized stack frame, then it can use s8 for

any purpose (which is why the disassembler calls it s8 instead of fp, I guess). And since 32-bit

code doesn’t ascribe special meaning to gp, then it too can be used for any purpose, provided

its value is preserved across the call. In practice the Microsoft compiler merely avoids the gp

register completely, and it uses the s8 register only as a frame pointer.

The stack is always aligned on an 8-byte boundary, and there is no red zone.

Some registers have stated purposes only at entry to a function or exit from a function. When

not at the function boundary, those registers may be used for any purpose.

Register marked with “Yes” in the “Preserved” column must be preserved across the call;

those marked “No” do not.

https://en.wikipedia.org/wiki/Red_zone_(computing)

3/4

The ra register is marked “Maybe” because you don’t normally need to preserve it. However,

if you are a leaf function that does not modify any preserved registers (not even sp), then you

can skip the generation of unwind codes for the leaf function, but you must keep the return

address in ra for the duration of your function so that the operating system can unwind out

of the function should an exception occur. (Special rules for lightweight leaf functions also

exist for Itanium, Alpha AXP, and x64.)

The at register is volatile because the assembler can use it for various invisible purposes,

primarily for synthesizing missing instructions. We’ll see examples of this as we go.

There are also two special-purpose integer registers, called HI and LO. These are used by

multiplication and division instructions, and we’ll cover them when we get to multiplication

and division.

There are 32 single-precision (32-bit) floating point registers, which can be paired up to form

16 double-precision (64-bit) floating point registers. When a pair is used to operate on a

single-precision value, the lower-numbered register holds the value, and the higher-

numbered register is not used. (Indeed, the value in the higher-numbered register will be

garbage.) So I guess you really have just 16 single-precision floating point registers, since the

odd-numbered ones are basically useless.

Register(s) Meaning Preserved? Notes

$f0/$f1 return value No

$f2/$f3 second return
value

No For imaginary component of
complex number.

$f4/$f5…$f10/$f11 temporary No

$f12/$f13…$f14/$f15 arguments No

$f16/$f17…$f18/$f19 temporary No

$f20/$f21…$f30/$f31 saved Yes

Floating point support is optional. If not supported, floating point instructions will trap into

the kernel, and the kernel is expected to emulate the instruction.

There is not a lot of floating point in typical systems programming, so I won’t cover it except

when discussing the calling convention later.

There is no flags register. Hopefully you don’t find this weird any more, seeing as we already

encountered this with the Alpha AXP.

https://devblogs.microsoft.com/oldnewthing/
https://blogs.msdn.microsoft.com/oldnewthing/20170807-00/?p=96766
https://blogs.msdn.microsoft.com/oldnewthing/20170811-00/?p=96805

4/4

The 32-bit address space is split down the middle between user-mode and kernel-mode. The

kernel-mode space is further split: Half of the kernel-mode address space is dedicated to

mapping physical addresses (the lowest 512MB² gets mapped twice, once cached and once

uncached), leaving only 1GB for the operating system. This partitioning is architectural; you

don’t get a choice in the matter.

Okay, we’ll begin next time by looking at 32-bit integer calculations.

¹ I know you’re wondering what happens if poorly-written user-mode code tries to use them.

The answer is that user-mode code can modify the register all it wants, but the value read

back may not be equal to value last written. As far as user mode is concerned, it’s basically a

black hole register that reads as garbage. This makes it even more useless than the zero

register, which is a black hole register that at least reads as zero. (Internally, the registers are

used by kernel mode as scratch variables during interrupt and exception handling.)

² I guess they figured that if you had more than 512MB of RAM, you’d have switched to a 64-

bit operating system.

Raymond Chen

Follow

https://blogs.msdn.microsoft.com/oldnewthing/20090611-00/?p=17933
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

