
1/4

April 3, 2018

The MIPS R4000, part 2: 32-bit integer calculations
devblogs.microsoft.com/oldnewthing/20180403-00

Raymond Chen

The MIPS R4000 has the usual collection of arithmetic operations, but the mnemonics are

confusingly-named. The general notation for arithmetic operations is

 OP destination, source1, source2

with the destination register on the left and the source register or registers on the right.

Okay, here goes. We start with addition and subtraction.

 ADD rd, rs, rt ; rd = rs + rt, trap on overflow
 ADDU rd, rs, rt ; rd = rs + rt, no trap on overflow
 SUB rd, rs, rt ; rd = rs - rt, trap on overflow
 SUBU rd, rs, rt ; rd = rs - rt, no trap on overflow

The ADD and SUB instructions perform addition and subtraction and raise a trap if a

signed overflow occurs. The ADDU and SUBU instructions do the same thing, but without

the overflow trap. The U suffix officially means “unsigned”, but this is confusing because the

addition can be performed on both signed and unsigned values, thanks to twos complement.

The real issue is whether an overflow trap is raised.

There are also versions of the addition instructions that accept a 16-bit signed immediate as a

second addend:

 ADDI rd, rs, imm16 ; rd = rs + (int16_t)imm16, trap on overflow
 ADDIU rd, rs, imm16 ; rd = rs + (int16_t)imm16, no trap on overflow

Note that the U is double-confusing here, because even though the U officially stands for

“unsigned”, the immediate value is treated as signed, and the addition is suitable for both

signed and unsigned values.

There are no corresponding SUBI or SUBIU instructions, but they can be synthesized:

 ADDI rd, rs, -imm16 ; SUBI rd, rs, imm16
 ADDIU rd, rs, -imm16 ; SUBIU rd, rs, imm16

https://devblogs.microsoft.com/oldnewthing/20180403-00/?p=98425

2/4

(Of course, this doesn’t work if the value you want to subtract is −32768, but hey, it mostly

works.)

The next group of instructions is the bitwise operations. These never trap.¹

 AND rd, rs, rt ; rd = rs & rt
 ANDI rd, rs, imm16 ; rd = rs & (uint16_t)imm16
 OR rd, rs, rt ; rd = rs | rt
 ORI rd, rs, imm16 ; rd = rs | (uint16_t)imm16
 XOR rd, rs, rt ; rd = rs ^ rt
 XORI rd, rs, imm16 ; rd = rs ^ (uint16_t)imm16
 NOR rd, rs, rt ; rd = ~(rs | rt)

Note the inconsistency: The addition instructions treat the immediate as a signed 16-bit value

(and sign-extend it to a 32-bit value), but the bitwise logical operations treat it as an

unsigned 16-bit value (and zero-extend it to a 32-bit value). Stay alert!

The last group of instructions for today is the shift instructions. These also never trap.

 SLL rd, rs, imm5 ; rd = rs << imm5
 SLLV rd, rs, rt ; rd = rs << (rt % 32)
 SRL rd, rs, imm5 ; rd = rs >>U imm5
 SRLV rd, rs, rt ; rd = rs >>U (rt % 32)
 SRA rd, rs, imm5 ; rd = rs >> imm5
 SRAV rd, rs, rt ; rd = rs >> (rt % 32)

The mnemonics stand for “shift left logical”, “shift right logical” and “shift right arithmetic”.

The V suffix stands for “variable”, and indicates that the shift amount comes from a register

rather than an immediate.

Yup, that’s another inconsistency. Following the pattern of the addition and bitwise logical

groups, these instructions should have been named SLL for shifting by an amount specified

by a register and SLLI for shifting by an amount specified by an immediate. Go figure.

There are no built-in sign-extension or zero-extension instructions. You can get zero-

extension in one instruction by explicitly masking out the upper bytes:

 ; zero extend byte to word
 ANDI rd, rs, 0xFF ; rd = (uint8_t)rs

 ; zero extend halfword to word
 ANDI rd, rs, 0xFFFF ; rd = (uint16_t)rs

Sign extension requires two instructions.

3/4

 ; sign extend byte to word
 SLL rd, rs, 24 ; rd = rs << 24
 SRA rd, rd, 24 ; rd = (int32_t)rd >> 24

 ; sign extend halfword to word
 SLL rd, rs, 16 ; rd = rs << 16
 SRA rd, rd, 16 ; rd = (int32_t)rd >> 16

And I’m going to mention these instructions here because I can’t find a good place to put

them:

 SYSCALL imm20 ; system call
 BREAK imm20 ; breakpoint

Both instructions trap into the kernel. The system call instruction is intended to be used to

make operation system calls; the breakpoint instruction is intended to be used for software

breakpoints. Both instructions carry a 20-bit immediate payload that can be used for

whatever purpose the operating system chooses.

Here are some more instructions you can synthesize from the official instructions:

 SUB rd, zero, rs ; NEG rd, rs
 SUBU rd, zero, rs ; NEGU rd, rs
 ADDU rd, zero, rs ; MOVE rd, rs
 OR rd, zero, rs ; MOVE rd, rs
 NOR rd, zero, rs ; NOT rd, rs
 SLL zero, zero, 0 ; NOP
 SLL zero, zero, 1 ; SSNOP

There are many possible ways of synthesizing a MOVE instruction, but in order to be able to

unwind exceptions, Windows NT requires that register motion in the prologue or epilogue of

a function must take one of the two forms given above.

Similarly, there are many ways of performing a NOP . Basically, any non-trapping 32-bit

computation that targets the zero register is functionally a nop, but the two above are treated

specially by the processor.

NOP = SLL zero, zero, 0 is special-cased by the processor as a nop that can be

optimized out entirely. Use it when you need to pad out some code for space.

SSNOP = SLL zero, zero, 1 is special-cased by the processor as a nop that must

be issued, and it will not be simultaneously issued with any other instruction. Use it

when you need to pad out some code for time. (The SS stands for “super-scalar”.)

The encoding of SLL zero, zero, 0 happens to be 0x00000000 , which I’m sure is not a

coincidence. I’m not convinced that it’s a good idea, though. I would have chosen

0x00000000 to be the encoding of a breakpoint or invalid instruction.

4/4

Okay, those are the 32-bit computation instructions. Next time, we’ll look at multiplication,

division, and the temperamental HI and LO registers.

¹ Alas, there is no NORI instruction. You think I’m joking, but I’m not. Be patient.

Raymond Chen

Follow

https://en.wikipedia.org/wiki/Nori
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

