
1/2

April 10, 2018

The MIPS R4000, part 7: Memory access (atomic)
devblogs.microsoft.com/oldnewthing/20180410-00

Raymond Chen

Atomic memory access on the MIPS R4000 is performed with the load-linked and store-

conditional instructions. This pattern shouldn’t be much of a surprise because we already

encountered it on the Alpha AXP.

   LL      rd, disp16(rs)  ; load linked 
   SC      rs, disp16(rd)  ; store conditional 

The LL  instruction loads a value from memory and monitors the memory address to see if

another processor writes to it. The SC  instruction stores the value to memory, provided

there have been no writes¹ to the monitored memory address² and no exceptions have

occurred.³ If the store succeeds, then rs is set to one; otherwise it is set to zero.

In both cases, the memory address must be word-aligned.

The intended usage pattern is

retry: 
   LL      r1, disp16(r2)  ; load linked 
   ADDIU   r1, r1, 1       ; increment 
   SC      r1, disp16(r2)  ; store conditional 
   BEQ     r1, 0, retry    ; if failed, then retry 
   NOP                     ; (we'll learn about this later) 

The state created by the LL  is ephemeral, and the subsequent SC  is permitted (but not

required) to fail if any of the following occur prior to the SC :

A memory access is performed.

A branch is taken.

More than 512 instructions are executed.

Furthermore, after the SC  (either successful or unsuccessful), all subsequent SC

instructions are required to fail until a new LL  is executed.

If the LL  from an address is followed by SC  which does not write to the same address, then

it is unspecified whether the SC  succeeds. So don’t do that.

https://devblogs.microsoft.com/oldnewthing/20180410-00/?p=98475
https://blogs.msdn.microsoft.com/oldnewthing/20170817-00/?p=96835


2/2

It is legal to execute the LL  instruction and not follow it with the SC  instruction. This can

happen if you want to perform a conditional atomic operation, and you discover that the

condition is not met.

Before and after the LL / SC  operation, you probably want to do a

   SYNC            ; memory barrier 

All memory operations that precede the SYNC  must complete before any operations that

follow the SYNC  can begin.

Note that atomic operations are supported only on aligned words. For aligned sub-word

objects, you can perform the atomic operation on the containing word. But if the object is not

aligned, then you’re out of luck.

Next time, we enter the exciting world of control transfer. That’s where the NOP  above gets

its moment to shine.

¹ Note that if another processor writes the value that is already there back to the memory, or

if there is an ABA condition where another processor changes the value, and then changes it

back, then the conditional store will fail, even though the value in memory is the same value

you started with. This is one cause for the mysterious case of the compare_exchange_weak

spurious failure.

² The architecture permits implementations to be sloppy with the detection of a write. In

particular, any modification on the same 4KB page as the locked address is permitted to

cause the subsequent store conditional instruction to fail. Mind you, an implementation that

was this sloppy would not be a very good implementation, but it is technically legal.

³ This last clause is actually an operating system convention, not something inherent in the

processor architecture. One of the things that kernel mode does before returning to user

mode is execute the SC  instruction with a scratch writable memory location. The SC  might

succeed, it might not, but it doesn’t matter. The reason for the SC  is to ensure that if the

next atomic memory operation performed by user-mode code is SC , then that operation

definitely fails. This is important in the case where the interrupt occurred after the user-

mode code performed the LL  but before it could execute the subsequent SC . Without it,

the SC  in user mode might succeed accidentally.

Raymond Chen

Follow

 

 

https://www.youtube.com/watch?v=ZQFzMfHIxng#t=33m03s
https://blogs.msdn.microsoft.com/oldnewthing/20090611-00/?p=17933
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

