
1/5

April 12, 2018

The MIPS R4000, part 9: Branch delay slot parlor tricks
devblogs.microsoft.com/oldnewthing/20180412-00

Raymond Chen

Last time, we learned about the MIPS branch delay slot. Today, we’ll look at some tricks you

can play with the branch delay slot.

First trick: It is legal to jump into a branch delay slot. Of course, it’s not a branch delay slot

when you do that. This lets you write some wacky-looking code:

 B somewhere ; unconditional branch
label:
 OR v0, zero, zero ; v0 = 0
...

When the unconditional branch is taken, the v0 register is set to zero before execution

continues at the branch destination.

Meanwhile, if somebody jumps to label , then execution continues at label , which sets

v0 to zero, and then continues with other stuff.

The instruction at label acts both as the branch delay slot for the unconditional branch

that precedes it, but it’s also the first instruction in the basic block if somebody jumps

directly into it.

I’ve seen the opportunity arise for this sort of “squeeze out a single instruction” optimization,

but the Microsoft compiler doesn’t take advantage of it. Which is probably a good thing. (For

one thing, it makes it much harder for binary transformation tools to decompose a program

into basic blocks and recombine them in different ways.)

Another branch delay slot trick is editing the return address as part of the jump.

 BAL somewhere
 ADDIU ra, ra, 4

 NOP

 NOP ; the routine returns here!

https://devblogs.microsoft.com/oldnewthing/20180412-00/?p=98495
https://devblogs.microsoft.com/oldnewthing/20180411-00/?p=98485
https://web.archive.org/web/20180719082446/https://blogs.msdn.microsoft.com/reiley/2011/08/06/microsoft-binary-technologies-and-debugging/

2/5

The BAL instruction sets the ra register to point to the instruction after the branch delay

slot, which in our case is the first NOP . But in the branch delay slot, we modify the ra

register, so that when execution reaches the start of the called procedure, it gets an artificial

return address.

I’m told this sort of trick is used by some compilers to combine a call and an unconditional

jump into a call with fake return address. For example, in this code fragment

 if (...) {
 ...
 function1(...);
 } else {
 ...
 }
 // resume
 x = 0;

the call to function1 is probably followed by an unconditional jump to skip over the

else branch.

 BAL function1
 NOP ; garbage in the branch delay slot
 B resume
 OR v0, zero, zero ; set x = 0

 ... else-branch code goes here ...

 OR v0, zero, zero ; set x = 0
resume:
 ...

A sneaky compiler could generate the following code:

 BAL function1
 ADDIU ra, ra, resume - nominal_return ; tweak return address
nominal_return:

 ... else-branch code goes here ...

resume:
 OR v0, zero, zero ; set x = 0
 ...

In the branch delay slot, we edit the return address so that when function1 returns, it

resumes execution at resume rather than nominal_return , thereby avoiding having to

execute another branch instruction. (We also were able to remove the duplicate OR v0,

zero, zero instruction that had been hoisted into the branch delay slot of the

http://www.pagetable.com/?p=313

3/5

unconditional branch.) Note that you get this savings only because you had a garbage NOP

in the branch delay slot. If there were a useful instruction there, then the transformation

would go like this:

 // original code
 BAL function1
 MOVE a0, r0 ; set parameter for function
 B resume
 OR v0, zero, zero ; set x = 0

 // sneaky code
 MOVE a0, r0 ; set parameter for function
 BAL function1
 ADDU ra, ra, ... ; tweak return address

resume:
 OR v0, zero, zero ; set x = 0

The instruction in the BAL instruction’s branch delay slot would have to go somewhere else,

so you didn’t save any time (though you still saved one instruction of space by avoiding

duplication of the OR v0, zero, zero).

But as we saw earlier, this trick defeats the return address predictor,¹ so it’s probably a bad

idea.

Okay, next time, we’re going to look at the calling convention a bit more closely.

Bonus chatter: Another extra sneaky trick is reusing the return address. Suppose your

interpreter loop goes like this:

void interpreter_loop(interpreter_state* state)
{
for (;;) {
 uint32_t opcode = *state->pc;
 state->pc++;
 jump_table[opcode](state, opcode, state->pc);
}
}

The interpreter loop just dispatches to the next opcode forever. Presumably you would break

out of this loop with a longjmp or some other nonlocal transfer.

The handler function is given the current interpreter state (so it can update it), and as a

courtesy, it also gets the current opcode and a pointer to the next unparsed byte as a

convenience.

https://devblogs.microsoft.com/oldnewthing/20041216-00/?p=36973

4/5

interpreter_loop:
 ...
 MOVE s0, a0 ; s0 points to the interpreter state
 LA s1, jump_table
 LA ra, next_opcode ; Footnote ²
next_opcode:
 LW v1, 80(s0) ; get address of next opcode byte
 ADDU a2, v1, 1 ; move to next opcode byte (also argument for handler)
 LBU a1, 0(v1) ; load current opcode byte (also argument for handler)
 SW a2, 80(s0) ; save pointer to next opcode byte
 SLL t0, a1, 2 ; multiple by 4 to index jump table
 ADDU t0, t0, s1 ; calculate entry in jump table
 LW v0, 0(t0) ; load the jump target
 JR v0 ; jump to handler - will return to next_opcode
 MOVE a0, s0 ; argument for handler

When we call the first handler, ra is set equal to next_opcode . That handler will do its

work and then return to the caller by restoring the return address to the ra register and

performing a JR ra .

This means that when control returns to next_opcode , you know that ra is equal to

next_opcode ! Since that’s the value you wanted to be in that register anyway, you can just

leave it there when you jump to the next handler, saving you the trouble of having to branch

back up to next_opcode explicitly.

This seems to be a really clever trick, but it is probably not that useful in practice because of

that return address predictor thing.

¹ On the other hand, the MIPS R4000 does not have separate opcodes for “jump indirect to

register” and “jump indirect to register for the purpose of returning”; it uses the JR

instruction for both cases.

The inability to distinguish whether a jump instruction was semantically a return instruction

was a non-issue in the original implementation of the MIPS architecture. It had only a two-

stage pipeline, so the single branch delay slot was sufficient to avoid ever needing to predict

any branches at all.

The MIPS R4000 had a four-stage pipeline, and a branch misprediction would consequently

suffer a 2-cycle stall. The MIPS designers codified existing practice and retroactively declared

that if the register operand in the JR instruction is ra, then it predicts as a subroutine

return; otherwise it predicts as a computed jump.

² For extra sneakiness (and to save an instruction),³ the loop preparation code could have

been written as

5/5

 LA s1, jump_table
 BAL next_opcode
 MOVE s0, a0 ; s0 points to the interpreter state
next_opcode:

This version lets the processor calculate the address of next_opcode by performing a BAL .

This sets the return address to the instruction after the branch delay slot, which is

next_opcode , and then jumps to… next_opcode , which is where the instruction would

have gone anyway.

³ Mind you, this size savings costs you a pipeline stall. See footnote 1.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

