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There seems to be a lot of confusion over branch delay slots. Instead of addressing each

comment, I’ll just make a post out of it.

The branch delay slot is a dynamic concept. An instruction is in a branch’s delay slot if the

runtime-determined previously-executed instruction was a branch, regardless of whether the

branch was taken.¹

In casual conversation, however, we tend to talk about “is in a branch delay slot” as a static

concept: Would the instruction be in a branch delay slot under the expected sequence of

execution?

Let’s look at our first example again:

   B       somewhere           ; unconditional branch 
label: 
   OR      v0, zero, zero      ; v0 = 0 

Is the OR  instruction in a branch delay slot?

It depends.

Here’s one possibility:

   ;   execution starts here 
   ADDIU   a0, zero, 4         ; a0 = 4 
   B       somewhere           ; unconditional branch 
label: 
   OR      v0, zero, zero      ; v0 = 0 

Executing the B  instruction puts the OR  instruction is in its branch delay slot.

Here’s another possibility:

https://devblogs.microsoft.com/oldnewthing/20180416-00/?p=98515
https://blogs.msdn.microsoft.com/oldnewthing/20180412-00/?p=98495


2/7

   ;   execution starts here 
   J       label               ; unconditional branch 
   NOP 

   B       somewhere           ; unconditional branch 
label: 
   OR      v0, zero, zero      ; v0 = 0 

In this case, the B  never executed. Therefore the OR  is not in the branch delay slot of the

B . It is also not in the branch delay slot of the J , because the previously executed

instruction was the NOP  (which was itself in the branch delay slot of the J ).

This means that it is technically legal to write two branch instructions back to back, provided

the first branch is never executed.

   J       somewhere 
label: 
   J       somewhere_else 
   NOP 

If execution of the first J  never occurs, then there is no violation of the “you cannot put a

branch instruction in a branch delay slot” rule, because the second J  is never in a branch

delay slot.

If you think about it, this is how branch delay slots have to be defined in order to make

programming tractable and to avoid the processor making spurious memory accesses just to

detect whether it’s in a branch delay slot.

Suppose a branch delay slot had been defined as “An instruction which has a branch

instruction four bytes earlier in memory (whether or not that branch instruction was

executed)”; let’s call this an alternate-universe branch delay slot. You could never start a

basic block with a branch instruction, because you don’t know what four bytes will come

before it in memory. There might be data embedded in the code segment, and the last piece

of data might just by pure chance happen to decode as a branch instruction.

lookup_table: 
   .word   1, 3, 5, 7, 2, 4, 6, 8 

trampoline: 
   J       actual_destination 
   NOP 

It so happens that the integer 8 is the encoding of the JR zero  instruction, which is a

branch instruction. (Not a very useful branch instruction, but the processor doesn’t care

about whether your code is useful.) If somebody jumps to the trampoline, it will so happen

that the four bytes preceding the J  instruction form another jump instruction, which would
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be a violation of the rule that you cannot put a branch instruction in an alternate-universe

branch delay slot. The compiler would have to insert a NOP  at the start of every trampoline

to ensure that the J  does not lie in an alternate-universe branch delay slot.

Furthermore, it means that after every branch instruction, the processor would have to fetch

two instructions from memory, one for the instruction being executed, and the other (four

bytes earlier) to determine whether the instruction is in an alternate-universe branch delay

slot.

And if the previous four bytes are (heaven forfend) on a not-present page, the processor

would have to raise a page fault in order to get the operating system to cough up those four

preceding bytes. (And if the previous page were invalid, then um I don’t know what you

would have to do.)

Thankfully, that’s not how the rule is written. Branch delay slots are determined at run time

based on instructions actually executed.

Okay, so what happens if you put a branch in a branch delay slot?

First of all, the primary purpose of this series is to help you debug user-mode MIPS assembly

code, and since no well-formed MIPS assembly code would put a branch in a branch delay

slot, this is not something you would ever encounter when debugging, so the question is

technically out of scope.

But let’s try to answer it anyway.

The processor architecture officially says that the result of putting a branch in a branch delay

slot is UNPREDICTABLE, which is a technical term that means, basically, “Anything can

happen, but limited to things that the code could already do at its current privilege level.” So

it might scramble all your registers to nonsense values, or fill them with the contents of

randomly-selected memory addresses, provided your privilege level has access to that

memory. It could jump to an arbitrary location. It could raise an exception. But it cannot, say,

cause user-mode code to load data from kernel-only memory space, or hang the processor.

So the answer to “What happens?” is “I can’t answer that because it’s not defined.”

But let’s try to answer it anyway.

On some versions of the MIPS processor, it will raise an invalid instruction exception.

On other versions of the MIPS processor, it will try to execute the branch anyway.

So let’s pick a specific processor that tries to execute the branch, say one of the original MIPS

processors with a two-stage pipeline.
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You can model the processor like this:

int program_counter; 
bool in_branch_delay_slot; 
std::array<pipeline, 2> unit; 

while (true) { 
// Fetch and decode the next instruction. 
unit[0].fetch_instruction(program_counter); 

program_counter += 4; 

// Execute the previous instruction. 
if (unit[1].is_branch_instruction()) { 
  program_counter = unit[1].calculate_branch_target(); 
} else { 
  ... handle other types of instructions ... 
}

// Remember whether the previous instruction was a branch. 
in_branch_delay_slot = unit[1].is_branch_instruction(); 

// Advance the pipeline 
std::rotate(unit.first(), unit.last() - 1, unit.last()); 
} 

In reality, the “Fetch and decode” and the “Execute the instruction” steps occur in parallel,

but we do it sequentially here for expository purposes.

Let’s step through a normal code sequence that involves a branch instruction:

10000000:   B   10000020 
10000004:   LW  v0, 80(t0) 

10000020:   ADD v0, v1, v0 

We start with program_ counter = 10000000 .

We fetch the branch instruction into unit zero, advance the instruction pointer to

10000004 , and then finish whatever the previous instruction was. Assume that the previous

instruction was not a branch instruction, so in_ branch_ delay_ slot  is false. Finally,

we advance the pipeline, so that the work that was previously in unit zero will continue in

unit one. (That’s not really how processors work, but this is a model, not the real thing.)

At the next cycle, program_ counter = 10000004 .

We fetch the LW  instruction into unit zero, advance the instruction pointer to 10000008 ,

and then execute the branch instruction in unit one, which means that the

program_ counter  is changed to 10000020  and in_ branch_ delay_ slot  is now
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true. That’s the end of this cycle, so we advance the pipeline again.

At the next cycle, program_ counter = 10000020 .

We fetch the ADD  instruction into unit zero, advance the instruction pointer to 10000024 ,

and then execute the LW  instruction in unit one to load some memory into a register. This

was not a branch instruction, so in_ branch_ delay_ slot  is now false. And then we

advance the pipeline.

This shows more concretely why the processor has a branch delay slot: The instruction after

the branch is already in the pipeline, so it will finish executing. The branch controls what

enters the pipeline next. Since we have a two-stage pipeline, that means that the effect of the

branch isn’t visible until two instructions later.

Suppose there is an exception at the LW , say, because the page was not present.

When an exception occurs, the processor captures the address of the faulting instruction into

a special control register called EPC (Exception Program Counter), and the value of

in_ branch_ delay_ slot  is captured into a special control flag called BD (Branch

Delay). The kernel trap handler copies the values out of these control registers so it can

resume execution after handling the exception.

In our case, the kernel receives a TLB Invalid exception to say “Hey, somebody tried to access

invalid memory.” The processor is kind enough to provide the address that was invalid (in

this case 80 + t0 ) so the kernel doesn’t have to try to parse the faulting instruction to

figure out the address.

The kernel does whatever it needs to do to make the memory present, updates the TLB, and

then it’s ready to resume execution.

The processor helps you out a little here: It does the work of backing up the instruction

pointer by four bytes if the BD flag is set.² In other words, if the faulting instruction was in a

branch delay slot, then the value in EPC is the address of the faulting instruction minus four.

To resume execution after handling the exception, the kernel just needs to restore the

processor registers, and then jump to EPC.

In our case, it means that when the exception is raised at the LW , the captured values are BD

= true, EPC = 10000004 - 4 = 10000000 .

Okay, so now let’s do something crazy: Let’s put a branch instruction in a branch delay slot.
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20000000:   B   20000020 
20000004:   B   20000040 

20000020:   LW  v0, 80(t0) 

20000040:   ADD v0, v1, v0 

We start with program_ counter = 20000000 .

We fetch the first branch instruction into unit zero, advance the instruction pointer to

20000004 , and then finish whatever the previous instruction was. That’s the end of this

cycle, so we advance the pipeline.

At the next cycle, program_ counter = 20000004 .

We fetch the second branch instruction into unit zero, advance the instruction pointer to

20000008 , and then execute the first branch instruction in unit one, which means that the

program_ counter  is changed to 20000020 , and in_ branch_ delay_ slot  is now

true. That’s the end of this cycle, so we advance the pipeline again.

At the next cycle, program_ counter = 20000020 .

We fetch the LW  instruction into unit zero, advance the instruction pointer to 20000024 ,

and then execute the second branch instruction in unit one, which means that the

program_ counter  is changed to 20000040 , and in_ branch_ delay_ slot  is still

true. That’s the end of this cycle, so we advance the pipeline again.

At the next cycle, program_ counter = 20000040 .

We fetch the ADD  instruction into unit zero, advance the instruction pointer to 20000044 ,

and then execute the LW  instruction in unit one. Oh no, this instruction takes a page fault!

The processor captures the current value of the in_ branch_ delay_ slot  flag (true)

into the BD special control register, and it captures the address of the faulting instruction

( 20000020 ) into the EPC special control register, And since the BD flag is set, the processor

subtracts four from 20000020 , leaving 2000001C .

The kernel processes the page fault by paging in the necessary data, and then it resumes

execution at EPC, which is 2000001C . It’s resuming execution at an instruction that wasn’t

part of the original instruction stream!

So that’s one possible result of putting a branch instruction in a branch delay slot: From the

user-mode code’s point of view, the CPU lost its mind and jumped to the wrong address.
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I reiterate that this is just one possible result. The result of putting a branch instruction in a

branch delay slot is architecturally UNPREDICTABLE, so what actually happens is

anybody’s guess.³

Next question: What happens if you jump into your own branch delay slot?

The instruction in the branch delay slot executes twice. It executes once because it’s in the

branch delay slot. It executes again because it’s the destination of the branch.

One final note is the case of emulated instructions. For example, maybe it was a misaligned

memory access, or it was a floating point operation on a system with no floating point

coprocessor. In the cases of emulation, the kernel wants to step over the emulated instruction

and resume execution at the next instruction. But what if the emulated instruction was in a

branch delay slot?

The kernel detects that it is in the ugly case by observing that the BD flag is set. In that case,

the kernel must back up and emulate the branch instruction, too! The kernel determines

whether the branch was taken or not-taken by inspecting the instruction opcode and the

contents of the relevant registers, and it resumes execution at the appropriate instruction:

Either the branch target if the branch was taken, or the instruction after the delay slot if the

branch was not taken. As we noted earlier, the processor already updated the return address

register if applicable, so at least the kernel doesn’t need to emulate that part of the

instruction.

¹ Note that the SPIM emulator gets this wrong. It sets the running_in_delay_slot variable

to 1 only for taken branches.

² The flip side of this behavior is that if you want to identify the faulting instruction, you have

to add four to EPC if the BD flag is set.

³ Indeed, the SPIM emulator does a third thing: It executes the instruction that comes

sequentially after the second branch instruction, and then continues execution at the

destination of the first jump instruction.

Raymond Chen

Follow

 

 

https://sourceforge.net/p/spimsimulator/code/HEAD/tree/CPU/run.cpp#l107
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

