
1/3

April 19, 2018

The MIPS R4000, part 14: Common patterns
devblogs.microsoft.com/oldnewthing/20180419-00

Raymond Chen

Okay, now that we see how function calls work, we can demonstrate some common code

sequences. If you are debugging through MIPS code, you’ll need to be able to recognize these

different types of calling sequences in order to keep your bearings.

Non-virtual calls generally look like this:

 ; Put the parameters in a0 through a3,
 ; and additional parameters go on the stack
 ; after the home space.
 sw t0, 20(sp) ; parameter 5 passed on the stack
 move a3, s1 ; parameter 4 copied from another register
 addiu a2, sp, 32 ; parameter 3 is address of local variable
 addiu a1, t1, 1 ; parameter 2 is calculated in place
 jal destination ; call the function
 move a0, s1 ; parameter 1 copied from another register

The parameters could be set up in any order, and there’s a good chance you’ll find one of the

parameters being set up in the branch delay slot. Note also that the JAL instruction might

end up jumping to an import stub if this turns out to have been a naïvely-imported function.

Virtual calls load the destination from the target’s vtable:

 ; "this" passed in a0. Other parameters go
 ; into a1 through a3, with additional parameters
 ; on the stack after the home space.
 sw t0, 20(sp) ; parameter 5 passed on the stack
 move a3, s1 ; parameter 4 copied from another register
 addiu a2, sp, 32 ; parameter 3 is address of local variable
 lw t6, 0(a0) ; t6 -> vtable of target
 lw t7, n(t6) ; t7 = function pointer from vtable
 jalr t7 ; call the function
 addiu a1, t1, 1 ; parameter 2 is calculated in place

I put all of the virtual dispatch code in one block of contiguous instructions, but in practice

the compiler may choose to interleave it with the preparation of the function arguments to

avoid data load stalls. The above example uses t6 and t7 as temporary registers for preparing

https://devblogs.microsoft.com/oldnewthing/20180419-00/?p=98555

2/3

the call, but in practice, the compiler will use any volatile register that is not being used to

pass parameters.

Calls to imported functions indirect through the entry in the import address table.

 ; Put the parameters in a0 through a3,
 ; and additional parameters go on the stack
 ; after the home space.
 sw t0, 20(sp) ; parameter 5 passed on the stack
 move a3, s1 ; parameter 4 copied from another register
 addiu a2, sp, 32 ; parameter 3 is address of local variable
 addiu a1, t1, 1 ; parameter 2 is calculated in place
 lui t6, XXXX ; t6 -> 64KB block containing import address table entry
 lw t6, YYYY(t6); t6 = function pointer from import address table entry
 jalr t6 ; call the function
 move a0, s1 ; parameter 1 copied from another register

Again, I put all of the relevant instructions together. In practice, the compiler tends to front-

load the fetching of the function pointer.

The last interesting calling pattern for today is the jump table, commonly used for dense

switch statements. Suppose we have this:

 switch (n) {
 case 1: ...; break;
 case 2: ...; break;
 case 3: ...; break;
 case 4: ...; break;
 }

The resulting code would look like this:

 ; jump to address based on value in v0
 addiu v0,v0,-1 ; subtract 1
 sltiu at,v0,4 ; in range of the jump table?
 beqz at,default ; nope - go to default
 sll v0,v0,2 ; convert to byte offset
 lui at,XXXX ; load high part of jump table address
 addu at,at,v0 ; add in the byte offset
 lw v0,YYYY(at) ; add in the low part and load jump table entry
 jr v0 ; and jump there
 nop ; branch delay slot

The jump table pattern first performs a single-comparison range check by the standard trick

of offseting the control value by the lowest value in the range and using an unsigned

comparison against the length of the range. Asssuming the range check passes, we load the

word at

 address of start of jump table + 4 * index

3/3

The lui + addu + lw sequence is a pattern we saw earlier when we studied memory

access: It’s the expansion of the pseudo-instruction

 lw v0, XXXXYYYY(v0) ; load jump table entry

Once we load the jump target, we perform a register indirect jump to the intended target, and

put a nop in the branch delay slot because we don’t have anything useful to put in there. (In

practice, there might be something useful in there.)

Okay, now that we’ve seen some patterns, next time we’ll try to understand an entire

function.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

