
1/3

August 2, 2018

Creating an awaitable lock for C++ PPL tasks
devblogs.microsoft.com/oldnewthing/20180802-00

Raymond Chen

The C# language (well, more accurately, the BCL) has the Reader Writer Lock Slim class

which has a Wait Async method which returns a task that completes asynchronously when

the lock has been acquired. I needed an equivalent for the Parallel Patterns Library (PPL),

and since I couldn’t find one, I ended up writing one. (If you can find one, please let me

know!)

https://devblogs.microsoft.com/oldnewthing/20180802-00/?p=99395
https://msdn.microsoft.com/en-us/library/system.threading.semaphoreslim(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.threading.semaphoreslim(v=vs.110).aspx


2/3

// AsyncUILock is a nonrecursive lock that can be waited on 
// asynchronously from a UI thread. 
class AsyncUILock 
{ 
public: 
 Concurrency::task<void> WaitAsync() 
 { 
   std::lock_guard<std::mutex> guard(mutex); 
   if (!locked) { 
     // Lock is available. Acquire it. 
     locked = true; 
     return completed_apartment_aware_task(); 
   } 

   // Lock is not available. 
   return completed_apartment_aware_task() 
     .then([captured_completion = completion] { 
     // Wait for it to become available. 
     return Concurrency::create_task(captured_completion); 
   }).then([this] { 
     // Then try again. 
     return WaitAsync(); 
   }); 
 } 

 void Release() 
 { 
   std::lock_guard<std::mutex> guard(mutex); 
   locked = false; 
   auto previousCompletion = completion; 
   completion = Concurrency::task_completion_event<void>(); 
   previousCompletion.set(); 
 } 

private: 
 std::mutex mutex; 
 bool locked = false; 
 Concurrency::task_completion_event<void> completion; 
};

The object consists of a std::mutex  which protects the internal state, a flag that indicates

whether the object has been claimed, and a task completion event that we use to signal

anybody waiting on the lock that they should check again.

I could have used an SRWLock  instead of a std::mutex , but I was lazy and wanted to take

advantage of the existing std::lock_guard .

You can perform async waits on this object in the usual manner. For example:

https://devblogs.microsoft.com/oldnewthing/


3/3

AsyncUILock lock; 

void DoSomething() 
{ 
 lock.WaitAsync().then([]{ 
   // do something with the lock held. 
   lock.Release(); 
 }); 
} 

or if you prefer co_await  (and you probably do):

AsyncUILock lock; 

void DoSomething() 
{ 
 co_await lock.WaitAsync(); 
 // do something with the lock held. 
 lock.Release(); 
} 

At this point, you might decide to return an RAII type to ensure that the lock doesn’t leak. I’ll

leave that as an exercise.

Raymond Chen

Follow

 

 

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

