
1/5

August 6, 2018

The PowerPC 600 series, part 1: Introduction
devblogs.microsoft.com/oldnewthing/20180806-00

Raymond Chen

The PowerPC is a RISC processor architecture which grew out of IBM’s POWER architecture.

Windows NT support was introduced in Windows NT 3.51, and it didn’t last long; the last

version to support it was Windows NT 4.0. Despite not being supported by the flagship

operating system, it continued to be supported by Windows CE, and a later version of the

PowerPC was chosen as the processor for the Xbox 360.

As with all the processor retrospective series, I’m going to focus on how Windows NT used

the PowerPC in user mode because the original audience for all of these discussions was user-

mode developers trying to get up to speed debugging their programs on PowerPC.

The PowerPC 600 series started out as a 32-bit processor, with 64-bit support arriving in the

620. The earliest record I can find (not that I looked very hard) shows Windows NT

supporting the 603 and 604 processors. I guess this makes sense, because Wikipedia says

that the 603 was the first processor to support the full PowerPC instruction set. The 603

could complete a maximum of two instructions per cycle; the 604 could do up to four. The

603 did not have a dynamic branch predictor, but the 604 did. Both could forward arithmetic

operations into the next arithmetic operation, so consecutive integer arithmetic operations

did not stall, even if the second depended on the result of the first.

The PowerPC 600 series processors are natively big-endian, with an option for little-endian

operation. Windows NT uses the processor in 32-bit little-endian mode.¹ Even though the

processor can be put into little-endian mode, this affects only how bytes are swapped when

they are read from or written to memory; the instructions themselves still operate in a big-

endian way, Among other things, the bits in a register are numbered from most-significant to

least-significant: Bit 0 is the high-order bit, and bit 31 is the low-order bit.

The PowerPC has 32 integer registers, each 32 bits wide. They are officially named GPR0

through GPR31, but the assembler just calls them 0 through 31. This is ridiculously

confusing,² so nobody uses the purely numeric names. People call them r0 through r31.

(Some assemblers call them r.0 through r.31.)

https://devblogs.microsoft.com/oldnewthing/20180806-00/?p=99425
https://en.wikipedia.org/wiki/IBM_POWER_Instruction_Set_Architecture
https://en.wikipedia.org/wiki/PowerPC_600#PowerPC_603

2/5

Register Mnemonic Meaning Preserved? Notes

gpr0 r0 No Of limited use

gpr1 r1 stack
pointer

Yes Includes 232-byte negative red
zone

gpr2 r2 table of
contents

Yes, mostly Access to global variables

gpr3…gpr10 r3…r10 argument No On function entry, contains
function parameters

gpr11 r11 temporary No For function glue

gpr12 r12 temporary No prologue and epilogue helper

gpr13 r13 read-only Yes TEB

gpr14…gpr31 r14…r31 saved Yes

Note that this does not exactly line up with the PowerPC register conventions for other

platforms. (Many other platforms assign special meanings to gpr11 through gpr13.)

The stack must be kept on an 8-byte boundary. There is a large red zone of 232 bytes at

negative offsets from the stack pointer. We’ll see the importance of this when we look at

function prologues.

The function return value is placed in r3.

The r0 register is of limited use because many instructions cannot use a source of r0. We’ll

see more about that later.

We’ll learn about the table of contents, function glue, and epilogue/prologue helpers later

when we cover Windows NT software conventions.

In addition to the general-purpose integer registers, there are a number of special-purpose

32-bit integer registers. There are only nineteen of these special-purpose registers, but the

numbers range from spr1 to spr1013. (The number space is very sparsely populated, but I

guess they reserved room for adding more registers in the future.) These are the ones you’re

likely to see in user-mode code:

Register Mnemonic Meaning Preserved? Notes

spr1 xer Status
bits

No Integer exception register

3/5

spr8 lr link
register

No On function entry, contains return
address

spr9 ctr counter No Dedicated counter or jump target

fpscr fpscr Status
bits

? Floating point status and control
register

I’ve never had to deal with floating point on the PowerPC, so I don’t know what parts of fpscr

need to be preserved and what parts don’t.

We’ll learn more about the other special registers as the need arises.

Remember how the Itanium, MIPS, and Alpha don’t have a flags register? Well, the PowerPC

scoffs at them. “Flags register? You say you want a flags register? I’ve got your flags register

right here. In fact, I’ve got eight sets of flags registers.” They are named cr0 through cr7, each

four bits wide. (The “cr” stands for condition register.) The pseudo-register cr can be used to

treat them as one giant 32-bit register.³ Remember that the PowerPC is a big-endian

processor, so cr0 occupies the most significant bits of cr, and so cr7 occupies the least

significant bits.

Condition register cr0 is the implicit target of integer operations, and condition register cr1 is

the implicit target of floating point operations. I don’t know which condition registers must

be preserved across calls, because I’ve never found any code that needed to.

The PowerPC also has 32 floating-point double-precision registers, officially named FPR0

through FPR31.

Register Mnemonic Preserved? Notes

fpr0 f0 No temporary

fpr1…fpr13 f1…f13 No Function parameters

fpr14…fpr31 f14…f31 Yes

As for instruction encoding, each instruction is 32 bits wide and must be aligned on a four-

byte boundary. The instruction whose encoding is 0x00000000 is reserved as an invalid

instruction, so trying to execute a page of zeros will instantly fault.

The general syntax for multi-operand opcodes is

 opcode destination, source1, source2, source3...

4/5

with the notable exception of store instructions, which put the source register on the left and

the address destination on the right.

The architectural terms for operand sizes are byte, halfword (2 bytes), word (4 bytes),

doubleword (8 bytes), and quadword (16 bytes). In 32-bit operation, the largest unit that can

be operated on directly is the word.

In opcode names, the word arithmetic is used to emphasize that the operands are treated as

signed (usually abbreviated a), and the words logical (l) and unsigned (u) or

sometimes zero-extended (z) are used to emphasize that the operands are treated as

unsigned. I guess they couldn’t make up their mind what to call it unsigned operations, so

they chose one at random each time they needed one. Note further that these conventions are

not uniformly applied, so stay alert.

The processor maintains the fiction that every instruction is retired completely before the

next one starts. Consequently, there are no architectural branch delay slots or load delay

slots. It also means that when an exception is raised, all instructions preceding the exception

have run to completion, and no instructions after the exception will appear to have started.

Internally, the processor may perform operations out of order or in parallel or speculatively,

and it may introduce stalls if your dependencies are too close together, but the processor

does its best to hide this from the code being executed.

There are two notable exceptions to the principle of sequential operation:

Floating point exceptions in imprecise mode can be delayed beyond the instruction that

triggered the exception.

Self-modifying code requires special instructions to evict the old instructions out of the

I-cache.

Both reads and writes to memory can be reordered, and reads can be speculated. Storing a

value may partly succeed before raising an exception. (For example, an unaligned store that

crosses into an invalid page may write to the valid page and then take an exception on the

invalid page.)

Okay, that’s enough background. We’ll pick up next time by taking a closer look at those

condition registers.

¹ When the processor is in 32-bit mode, you can still execute 64-bit instructions. However,

since Windows NT did not require a 64-bit capable version of the PowerPC processor,

PowerPC programs for Windows NT had to perform runtime detection of 64-bit support and

run either a 32-bit friendly version of the code or a 64-bit version of the code. In practice,

https://msdn.microsoft.com/en-us/library/windows/desktop/ee418650(v=vs.85).aspx
https://blogs.msdn.microsoft.com/oldnewthing/20180807-00/?p=99435

5/5

nobody did this. They just stuck to 32-bit code. (Even though you could use 64-bit

instructions in 32-bit mode, the ABI preserves only the least-significant 32 bits of saved

registers.)

² The designers of the PowerPC assembly language appear to be dedicated to making their

instruction set as confusing as possible by making the assembly language be just barely more

readable than machine code. For example, to say “Decrement the counter, and branch if the

result is zero and the eq flag is set in cr3“, they want you to write

 bc 2, 14, destination

Because obviously 2 means “decrement counter and branch if the result is zero and the

specific flag is set”, and naturally 14 means “the eq flag in cr3.”

The Windows disassembler substitutes names for some (but not all) of these magic numbers

at disassembly so you don’t have to remember all the codes.

³ You might think, “Who’s to say which is the real register and which is the pseudo-register?

You could equivalently think of cr as the real register, and the cr# registers as pseudo-

registers!” Perhaps so, but the processor can execute operations on different cr# registers in

parallel. If cr were the real register, then you would expect multiple operations on different

cr# registers to be dependent on each other since they are all operating on cr.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

