
1/5

August 7, 2018

The PowerPC 600 series, part 2: Condition registers and
the integer exception register

devblogs.microsoft.com/oldnewthing/20180807-00

Raymond Chen

The integer exception register xer contains a bunch of stuff, but the ones that are relevant to

us are

Bit Name

0 Summary overflow

1 Overflow

2 Carry

Some instructions update the overflow and summary overflow bits in the xer register. When

those instructions are executed, the overflow bit is updated to represent whether the

operation resulted in a signed overflow. The summary overflow bit accumulates all the

overflow bits since it was last explicitly reset. This lets you perform a series of arithmetic

operations and then test a single bit at the end to see if an overflow occurred anywhere along

the way.

Some instructions consume and/or target the carry bit in xer. We’ll discuss how carry works

when we get to integer arithmetic.

Each of the cr# condition registers consists of four bits, numbered from most signficant to

least significant.

Bit Name Mnemonic

0 Less than lt

1 Greater than gt

2 Equal to eq

https://devblogs.microsoft.com/oldnewthing/20180807-00/?p=99435


2/5

3 Summary overflow so

For convenience, the assembler predefines the constants lt, gt, eq, and so to represent their

respective bit numbers.

The cmp  family of instructions compare two values and write the result to a condition

register.

   cmpw    crd, ra, rb     ; crd = compare ( int32_t)ra with ( int32_t)rb 
   cmpwi   crd, ra, imm16  ; crd = compare ( int32_t)ra with ( int16_t)imm16 
   cmplw   crd, ra, rb     ; crd = compare (uint32_t)ra with (uint32_t)rb 
   cmplwi  crd, ra, imm16  ; crd = compare (uint32_t)ra with (uint16_t)imm16 

You can compare two registers, or you can compare a register with an immediate, and you

can choose whether the comparison is signed or unsigned. (Recall that the l  stands for

logical.) For example:

   cmpw    cr3, r0, r1     ; cr3 = compare r0 with r1 as signed values 

The lt, gt, and eq bits are set according to the result of the comparison, and the so bit receives

a copy of the current summary overflow bit in xer.

If you do not specify a destination comparison register, it defaults to cr0:

   cmpw    ra, rb          ; cr0 = compare ( int32_t)ra with ( int32_t)rb 
   cmpwi   ra, imm16       ; cr0 = compare ( int32_t)ra with ( int16_t)imm16 
   cmplw   ra, rb          ; cr0 = compare (uint32_t)ra with (uint32_t)rb 
   cmplwi  ra, imm16       ; cr0 = compare (uint32_t)ra with (uint16_t)imm16 

As we’ll see later, some arithmetic instructions implicitly update cr0 by comparing the

computed result against zero. (Similarly, some floating point operations implicitly update

cr1.) When performed as part of an arithmetic instruction, the comparison is always

performed as a signed comparison, even if the instruction’s underlying operation was

unsigned.

If you combine an update of cr0 with an arithmetic operation, the so bit is a copy of the

summary overflow bit in the xer register at the end of the instruction. That means that if an

arithmetic operation requests both cr0 and xer to be updated, the xer register is updated

first, and then the summary overflow bit from xer is copied to the so bit in cr0. That means

that the so bit in cr0 captures whether a signed overflow occurred in any overflow-detecting

operation up to and including the current one.

The Microsoft compiler tends to prefer to target cr6 and cr7 in its comparison instructions. It

doesn’t make much difference to the processor, but I suspect the compiler tries to avoid cr0

so that it doesn’t conflict with the use of cr0 by the arithmetic instructions.



3/5

   mcrxr  crd              ; crd = first four bits of xer 

The “move to condition register from xer” instruction copies the summary overflow,

overflow, and carry bits from the xer register to the specified condition register, and then it

clears the bits from xer.

No, I don’t know why they left the “e” out of the opcode.

This is how you reset the summary overflow.¹

   mtxer  ra               ; xer = ra 
   mfxer  rd               ; rd = xer 

These instructions² move to/from the xer register. They are another way to clear the xer

register, or to set it to a particular initial state.

There are a good number of bitwise operations that combine two condition register bits and

store the result into a third condition register bit. These let you build boolean expressions out

of condition registers.

   crand   bd, ba, bb  ; cr[bd] =   cr[ba] &  cr[bb] 
   cror    bd, ba, bb  ; cr[bd] =   cr[ba] |  cr[bb] 
   crxor   bd, ba, bb  ; cr[bd] =   cr[ba] ^  cr[bb] 
   crnand  bd, ba, bb  ; cr[bd] = !(cr[ba] &  cr[bb]) 
   crnor   bd, ba, bb  ; cr[bd] = !(cr[ba] |  cr[bb]) 
   creqv   bd, ba, bb  ; cr[bd] = !(cr[ba] ^  cr[bb]) 
   crandc  bd, ba, bb  ; cr[bd] =   cr[ba] & !cr[bb] "and complement" 
   crorc   bd, ba, bb  ; cr[bd] =   cr[ba] | !cr[bb] "or complement" 

Remember that the PowerPC numbers bits from most significant to least significant, so bit

zero is the high-order bit.

To save you from having to memorize all the bit numbers, the assembler lets you write cr0 to

mean 0, cr1 to mean 1, and so through cr7 which means 7. Combined with the constants for

the four bits in the condition register, this lets you write

   crand   4*cr3+eq, 4*cr2+lt, 4*cr6+gt ; cr3[eq] = cr2[lt] & cr6[gt] 

instead of the instruction only a processor’s mother could love:

   crand   14, 8, 25                    ; cr3[eq] = cr2[lt] & cr6[gt] 

There are also special instruction for transferring between cr and a general-purpose register.

   mfcr    rt           ; rt = cr 
   mtcrf   mask, ra     ; cr = ra (selected by mask) 



4/5

The mask is an 8-bit immediate. If a bit is set, then the corresponding cr# is copied from the

corresponding bits of ra. For example, 128 means “Copy the top four bits of ra into cr0, and

leave all the other condition registers alone.” Recall that the PowerPC counts bits from most

significant to least significant, so cr0 is stored in the highest-order four bits.

The assembler provides synthetic instructions for various special cases of the above

operations:

   creqv   bd, bd, bd  ; crset   bd          ; cr[bd]  = 1 
   crxor   bd, bd, bd  ; crclr   bd          ; cr[bd]  = 0 
   cror    bd, ba, ba  ; crmove  bd, ba      ; cr[bd]  = cr[ba] 
   crnor   bd, ba, ba  ; crnot   bd, ba      ; cr[bd]  = !cr[ba] 
   mtcr    ra          ; mtcrf   255, ra     ; cr = ra 

Here’s an example of how these boolean operations could be used:

   cmpw    cr2, r4, r5 ; compare r4 with r5, put result in cr2 
   cmpw    cr3, r6, r7 ; compare r6 with r7, put result in cr3 
   crandc  4*cr0+eq, 4*cr2+gt, 4*cr4+eq ; cr0[eq] = cr2[gt] & !cr4[eq] 
   beq     destination ; jump if r4 > r5 && r6 != r7 

We perform two comparison operations and put the results into cr2 and cr3. We then

perform a boolean “and not” operation that calculates

   cr0[eq] = (r4 > r5) & !(r6 == r7) 
           = (r4 > r5) & (r6 != r7) 

The result is placed into the eq position of cr0, which makes it a perfect place to be the

branch condition of the beq  instruction.

The traditional way of doing this on processors that don’t have these fancy condition register

operations is to perform a test and a conditional branch, then another test and another

conditional branch. Combining the results of the test and performing a single branch means

that the entire sequence consumes only one slot in the branch predictor. This leaves more

slots free to predict other branches, and the single slot this sequence does consume can

predict the final result, which might be easier to predict than the individual pieces. (For

example, the test might be validating that a parameter is one of two valid values. The

parameter is almost always valid, even though one might not be able to predict which of the

two valid values it is at any particular time.)

Fabian Giesen notes that in practice, you don’t get to perform this optimization as often as

you’d like because of short-circuiting rules in many programming languages. Under those

rules, this optimization works only if the second term can be evaluated without any risk of

taking any exceptions (or if the language permits you to take an exception anyway, say,

because any exception would be the result of undefined behavior).

https://blogs.msdn.microsoft.com/oldnewthing/20170822-00/?p=96865#comment-1306986


5/5

I have yet to see the Microsoft C compiler for PowerPC perform this optimization. It just does

things the conventional way. But that may just be because I haven’t encountered a situation

where the optimization is even possible. (Also, because I’m studying code from Windows NT

3.51, and compiler technology was not as advanced back then.)

Okay, next time we’ll start doing some arithmetic.

¹ You might have noticed that there are only three interesting bits in xer but room for four

bits in a condition register. The last bit is undefined. Usually, you don’t care much about the

bits that got transferred; the main purpose of the instruction is its side effect of clearing the

summary overflow.

² These instructions are actually special cases of the mtspr  and mfspr  instructions which

move to/from a special register. The xer register is formally register spr1, so the mtxer  and

mfxer  instructions are technically synthetic instructions.

   mtspr  1, ra            ; spr1 = ra 
   mfspr  1, rd            ; rd = spr1 

Raymond Chen

Follow

 

 

https://blogs.msdn.microsoft.com/oldnewthing/20180808-00/?p=99445
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

