
1/3

August 9, 2018

The PowerPC 600 series, part 4: Bitwise operations and
constants

devblogs.microsoft.com/oldnewthing/20180809-00

Raymond Chen

The PowerPC 600 series includes the following bitwise logical operations:

 and rd, ra, rb ; rd = ra & rb
 or rd, ra, rb ; rd = ra | rb
 xor rd, ra, rb ; rd = ra ^ rb
 nand rd, ra, rb ; rd = ~(ra & rb)
 nor rd, ra, rb ; rd = ~(ra | rb)
 eqv rd, ra, rb ; rd = ~(ra ^ rb)
 andc rd, ra, rb ; rd = ra & ~rb "and complement"
 orc rd, ra, rb ; rd = ra | ~rb "or complement"
 ; also "." versions

Each of these instructions also comes with a dot variant that updates cr0 based on the result.

There are also versions that take immediates or sometimes shifted immediates, and

sometimes they update flags, and sometimes they don’t. There isn’t much orthogonality here.

It’s all case-by-case.

 andi. rd, ra, imm16 ; rd = ra & (uint16_t)imm16, update cr0
 andis. rd, ra, imm16 ; rd = ra & ((uint16_t)imm16 << 16), update cr0
 ori rd, ra, imm16 ; rd = ra | (uint16_t)imm16
 oris rd, ra, imm16 ; rd = ra | ((uint16_t)imm16 << 16)
 xori rd, ra, imm16 ; rd = ra ^ (uint16_t)imm16
 xoris rd, ra, imm16 ; rd = ra ^ ((uint16_t)imm16 << 16)

Immediates are allowed only on three of the bitwise operations, and the and version always

updates flags, whereas the or and xor versions never update flags.

For some reason, sign extension is placed in the logical operations group.

 extsb rd, ra ; rd = (int8_t)ra
 extsb. rd, ra ; rd = (int8_t)ra, update cr0
 extsh rd, ra ; rd = (int16_t)ra
 extsh. rd, ra ; rd = (int16_t)ra, update cr0

We now have enough instructions to load constants.

https://devblogs.microsoft.com/oldnewthing/20180809-00/?p=99455

2/3

If the constant is in the range 0xFFFF8000 to 0x00007FFF , it can be loaded in one

instruction:

 ; load immediate: rd = (int16_t)imm16
 addi rd, 0, imm16 ; li rd, imm16

It can also be done in one instruction if the constant is an exact multiple of 65536.

 ; load immediate shifted: rd = imm16 << 16
 addis rd, 0, imm16 ; lis rd, imm16

These take advantage of the fact that the addi and addis instructions treat r0 as if it were

zero. They are the only non-memory instructions that have this special behavior with respect

to r0.

If the constant you want to load doesn’t fall into either of the two categories above, then you’ll

have to load it in two steps:

 addis rd, 0, imm16a ; rd = imm16a << 16
 ori rd, rd, imm16b ; rd = (imm16a << 16) | (uint16_t)imm16b

This sequence takes advantage of the fact that the ori instruction treats its 16-bit

immediate as an unsigned value. That way, we don’t have to play funny games with the most

significant 16 bits if the least-significant 16 bits happen to form a negative integer when

interpreted as a signed 16-bit value.

While I’m here I may as well mention a third synthetic instruction based on addi :

 ; load address: rd = effective address of imm16(ra)
 addi rd, ra, imm16 ; la rd, imm16(ra)

A commonly-used synthetic instruction is “move register”:

 or rd, ra, ra ; mr rd, ra
 or. rd, ra, ra ; mr. rd, ra

Moving a register to itself is functionally a nop, but the processor overloads it to signal

information about priority.

 or r1, r1, r1 ; low priority
 or r6, r6, r6 ; medium-low priority
 or r2, r2, r2 ; normal priority

A program can voluntarily set itself to low priority if it is waiting for a spin lock. There are

other priority levels which are available only to kernel mode and are ignored in user mode.

Finally, everybody’s favorite instruction:

 ori r0, r0, 0 ; nop

3/3

This is the official nop instruction recognized by the processor. There are other instructions

that have no visible effect, but they might not be optimized efficiently. For example, rlwinm

ra, ra, 0, 0, 31 has no visible effect, but it will probably introduce a register

dependency. And as we saw above, sometimes instructions with no visible effect become

overloaded as signals to the processor, so your best bet is to avoid them.

Wait, you don’t know what the rlwinm instruction does? We’ll dig into that next time, when

we enter the crazy world of rotating and shifting, and you’ll be formally introduced to the

rlwinm instruction, the Swiss army knife instruction of the PowerPC instruction set.

Raymond Chen

Follow

https://blogs.msdn.microsoft.com/oldnewthing/20180810-00/?p=99465
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

