
1/5

August 10, 2018

The PowerPC 600 series, part 5: Rotates and shifts
devblogs.microsoft.com/oldnewthing/20180810-00

Raymond Chen

The Swiss army knife instruction of the PowerPC 600 series instruction set is rlwinm ,

which stands for “rotate left word immediate and mask.”

 rlwinm rd, ra, imm5a, imm5b, imm5c
 rlwinm. rd, ra, imm5a, imm5b, imm5c ; also updates cr0

This instruction does everything except wash your floor.

First it takes the current value of the ra register and rotates it left by imm5a bits. Then it

keeps all the bits imm5b to imm5c, inclusive, and clears all the other bits. If imm5b is greater

than imm5c, the bits to keep wrap around! (Don’t forget that bit zero is the most significant

bit.) The result of all this is placed in the rd register.

Let’s take a few examples.

 rlwinm rd, ra, 5, 6, 20

Here, we take ra, rotate it left by 5 bits, and then keep bits 6 through 20. Since bit 0 is the

most significant bit, then that means that the mask is

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0

0 3 F F F 8

This comes out to 0x03FFF800 . Therefore, the result of the operation is

 rd = rotl(ra, 5) & 0x03FFF800

The other case is where the bit count wraps around:

 rlwinm rd, ra, 5, 20, 6

https://devblogs.microsoft.com/oldnewthing/20180810-00/?p=99465

2/5

This time, we start by setting bit 20, and continue to the end of the word, and then wrap

around and start setting bits starting at bit 0, and then finally stop when we get to bit 6.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

F E 0 0 0 F

The net result is therefore

 rd = rotl(ra, 5) & 0xFE000FFF

The Windows debugger for PowerPC was not in use for very long, and consequently its

disassembler isn’t particularly advanced. But one thing it does do for you is unpack the last

two parameters and tell you what the final mask is.

10ae222c 54642d0c rlwinm r4, r3,5,20,6 MASK=0xfe000fff

(Yes, the disassembler can’t make up its mind whether it puts a space after a comma or not.

Like I said, the debugger didn’t last long enough to go through multiple iterations of polish.)

With the rlwinmi instruction, we can build many things. (In all examples, bit index

arithmetic wraps around at 32.)

Rotate left by n bits:

 rlwinm rd, ra, n, 0, 31

Rotate left by n bits, and specify a mask that starts at bit 0 and ends at bit 31. This mask

is 0xFFFFFFFF , which means that no bits get cleared.

Rotate right by n bits:

 rlwinm rd, ra, 32 - n, 0, 31

Rotate left by 32 − n bits, and specify a mask that starts at bit 0 and ends at bit 31. This

mask is 0xFFFFFFFF , which means that no bits get cleared.

3/5

Shift left by n bits:

 rlwinm rd, ra, n, 0, 31 - n

Rotate left by n and clear the rightmost n bits. In Windows NT, the most common

version of this is

 rlwinm rd, ra, 2, 0, 29

which shifts a value left two places. This multiplies it by four, which is a common

operation when indexing an array of pointers.

Shift right by n bits:

 rlwinm rd, ra, 32 - n, n, 31

Rotating left by 32 − n is the same as rotating right by n. We then clear the leftmost n

bits by saying we want to keep the bits starting from position n to the end of the

register.

Pluck bit n out of a 32-bit value:

 rlwinm rd, ra, n + 1, 31, 31

Rotate left by n + 1 to position the desired bit in position 31, then clear all the other bits.

Extract a bitfield of length m at position n:

 rlwinm rd, ra, n + m, 32 - m, 31

Rotate left by n + m, which right-aligns the field, then clear all but the rightmost m bits.

Take the least significant m bits of a value and position it so it can be inserted into a

bitfield starting at position n:

 rlwinm rd, ra, 32 - n - m, n, n + m - 1

Rotate right by n + m, which positions the field into its final location, then clear all the

bits that aren’t used to represent the field.

4/5

Set a bitfield of length m at position n to zero:

 rlwinm rd, ra, 0, n + m, n - 1

A rotation of zero does nothing, but here’s where we exploit the wraparound behavior

of the mask: We keep the bits starting at n + m, which is the last bit past the end of the

field, and continue keeping bits through the end of the register, and then wrap around

and keep bits starting at bit zero, and stop at bit n − 1, which is the last bit before the

start of the field.

Zero-extend a byte to a word and do not update cr0:

 rlwinm rd, ra, 0, 24, 31

We perform no rotation and zero out the most significant 24 bits. We can also do zero

extension with andi. , but the rlwinm instruction lets us do it without updating cr0.

Zero-extend a halfword to a word and do not update cr0:

 rlwinm rd, ra, 0, 16, 31

This time, after doing no rotation, we zero out the most significant 16 bits. Again, we

could have done this with andi. , but this way lets us do it without updating cr0.

There is also a version of the instruction where the rotation amount comes from a register.

 rlwnm rd, ra, rb, imm5a, imm5b
 rlwnm. rd, ra, rb, imm5a, imm5b ; also updates cr0

“Rotate left word and mask” is like “rotate left word immediate and mask”, except that the

rotation amount is specified by the value of a register. (Since rotation by a multiple of 32 bits

is a nop, it doesn’t matter whether bits 0 through 26 in rb are respected or ignored.)

 rlwimi rd, ra, imm5a, imm5b, imm5c
 rlwimi. rd, ra, imm5a, imm5b, imm5c ; also updates cr0

“Rotate left word immediate and mask insert” rotates the value in the ra register left by

imm5a bits, and then copies bits imm5b through imm5c of the rotated value (wrapping

around if necessary) to rd, leaving the other bits of rd alone. This instruction is most useful

for storing a value into a bitfield:

 rlwimi rd, ra, 32 - n - m, n, n + m - 1

The above instruction takes the least significant m bits of ra and sets them into a bitfield of

size m starting at position n in rd. We did the math for this before, when we tried out

rlwinm to position a bitfield. By using rlwimi , we get to store it.

Okay, now we can get to the true shift instructions.

5/5

 slw rd, ra, rb ; rd = ra << (rb % 64)
 slw. rd, ra, rb ; rd = ra << (rb % 64), update cr0

 srw rd, ra, rb ; rd = ra >> (rb % 64)
 srw. rd, ra, rb ; rd = ra >> (rb % 64), update cr0

The slw and srw instructions shift a register left or right by an amount specified by the

value of another register. Notice that the shift amount is taken mod 64, rather than mod 32.

This means that a shift by 63 will set the result to zero, but a shift by 64 will do nothing.

 sraw rd, ra, rb ; rd = (int32_t)ra >> (rb % 64), update carry
 sraw. rd, ra, rb ; rd = (int32_t)ra >> (rb % 64), update carry and cr0

 srawi rd, ra, imm5 ; rd = (int32_t)ra >> imm5, update carry
 srawi. rd, ra, imm5 ; rd = (int32_t)ra >> imm5, update carry and cr0

The sraw instruction performs an arithmetic right shift by an amount specified by the rb

register, and the srawi instruction does the same, but with an immediate shift amount.

These four shift instructions are special because they always update carry: The carry bit is set

if and only if the original value was negative and any bits shifted out were nonzero. This rule

for the carry bit allows you to follow the right-shift instruction with an addze to perform a

division by a power of two that rounds toward zero. (If you omit the addze , then the right

shift performs a division by a power of two that rounds toward minus infinity.)

Exercise: How would you do a division by a power of two that rounds toward positive

infinity?

Here’s a sample code sequence to perform a C-style logical not operation:

 cmpwi r3,0 ; set EQ if value was zero
 mfcr r3 ; r3 = cr
 rlwinm r3,r3,eq+1,31,31 ; save the EQ bit

Similarly, you can calculate the C logical < and > operations by performing the

comparison and extracting the lt or gt bit. To get the other three comparisons != , <= and

>= , you follow up with xori r3, r3, 1 .

Okay, those are the logical and shifting instructions. Next time, we’ll look at memory access.

Raymond Chen

Follow

https://blogs.msdn.microsoft.com/oldnewthing/20180813-00/?p=99475
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

