
1/5

August 15, 2018

The PowerPC 600 series, part 8: Control transfer
devblogs.microsoft.com/oldnewthing/20180815-00

Raymond Chen

The PowerPC 600 series has a few types of control transfer instructions. Let’s look at direct

branches first.

 b target ; branch to target
 bl target ; branch to target and link

The direct branch instructions perform an unconditional relative branch to the target. It has

a reach of ±32MB. All the “… and link” instructions set the lr register to the return address

(the instruction after the branch). This happens even for conditional branches when the

branch is not taken.

There are also absolute versions of these instructions:

 ba target ; branch to target (absolute form)
 bla target ; branch to target and link (absolute form)

The absolute versions treat the displacement as an absolute address rather than as a

displacement from the current instruction pointer. These are not useful in Windows NT, but

could be useful in embedded systems.

Things get exciting when you look at the conditional branches. Formally, they are written as

 bc BO, BI, target ; branch conditional
 bcl BO, BI, target ; branch conditional and link

Conditional branch instructions have a reach of only ±32KB. There are also absolute variants

bca and bcla which treat the displacement as an absolute address, allowing conditional

branches to the top and bottom 32KB of address space. Again, absolute addressing is not that

useful in Windows NT.

The magical BO and BI parameters describe the condition to be tested. You can optionally

decrement the ctr register and check if the result is zero or nonzero.¹ You can also optionally

check if a specific bit in the cr register is set (true) or clear (false), and sometimes you can

provide a static prediction hint. The following combinations are valid:

https://devblogs.microsoft.com/oldnewthing/20180815-00/?p=99495
https://blogs.msdn.microsoft.com/oldnewthing/20090611-00/?p=17933
https://blogs.msdn.microsoft.com/oldnewthing/20090611-00/?p=17933

2/5

Decrement ctr? Test a bit in cr? Prediction hint BO Mnemonic

Yes, test for nonzero No 16 dnz

Yes, test for nonzero No Not taken 24 dnz-

Yes, test for nonzero No Taken 25 dnz+

Yes, test for nonzero Test for false 0 dnzf

Yes, test for nonzero Test for true 8 dnzt

Yes, test for zero No 18 dz

Yes, test for zero No Not taken 26 dz-

Yes, test for zero No Taken 27 dz+

Yes, test for zero Test for true 10 dzt

Yes, test for zero Test for false 2 dzf

No Test for false 4 f

No Test for false Not taken 6 f-

No Test for false Taken 7 f+

No Test for true 12 t

No Test for true Not taken 14 t-

No Test for true Taken 15 t+

Unconditional Taken 20

Any BO values not in the above table are reserved for future use and should be avoided if you

know what’s good for you.

A static prediction hint overrides any internal branch prediction algorithm, so you’d better

have very high confidence that your hint is correct.

These mnemonics save you from having to memorize the BO numbers.

 bxx BI, target ; branch conditional
 bxxl BI, target ; branch conditional and link

Except that if the mnemonic ends in a + or - , then the prediction hint goes at the very

end. For example, “branch if false and link, predict not taken” is bfl- .

3/5

The bit index BI can be written as a number, but as we saw when we learned about condition

registers, you can combine the condition register bit mnemonics with with the cr#

mnemonics to produce a reference to a condition bit. For example, 4*cr2+gt means “The

gt bit in the cr2 condition register.” And since the numeric value of cr0 is zero, you can omit

4*cr0+ , which results in some surprisingly readable results like

 bt eq, target ; branch if eq is set in cr0

The assembler goes one step further and provides a few combination mnemonics:²

Branch and condition Mnemonic Meaning

bt lt blt Branch if less than

bt gt bgt Branch if greater than

bt eq beq Branch if equal

bt so bso Branch if summary overflow

bf lt bnl Branch if not less than

bf gt bng Branch if not greater than

bf eq bne Branch if not equal

bf so bns Branch if not summary overflow

The mnemonics can separate the condition bit from the condition register, so you can get

 beq cr4, target ; branch if eq is set in cr4

Okay, the next type of branch instruction is the computed jump.

 bcctr BO, BI, BH ; branch conditional to address in ctr
 bcctrl BO, BI, BH ; branch conditional to address in ctr and link

 bclr BO, BI, BH ; branch conditional to address in lr
 bclrl BO, BI, BH ; branch conditional to address in lr and link

You are not allowed to use any of the “decrement ctr” branch operations with the bcctr or

bcctrl instructions because shame on you for even thinking about trying it.

The BO and BI codes follow the same rules as above, and the assembler provides mnemonics

for various combinations. If you go to PowerPC reference materials, you’ll see horrid tables

that look like some sort of dystopian declension table from a long-forgotten Slavic language.

https://developer.apple.com/library/content/documentation/DeveloperTools/Reference/Assembler/050-PowerPC_Addressing_Modes_and_Assembler_Instructions/ppc_instructions.html#//apple_ref/doc/uid/TP30000824-TPXREF105

4/5

In this hypothetical language, bdnztlrl means something like “branch on odd-numbered

Thursdays,” I guess. (Okay, it actually means “branch, after decrementing ctr , if the result

is nonzero, and if the condition bit is true, to the address in the lr register, and link.”)

The BH field provides a hint for branch prediction, primarily whether the branch target is

likely to be the same as the previous time the branch was encountered. Branches through an

import table are likely to be the same each time. Branches through a vtable could also use

this hint if the method is being dispatched from the same object in a loop. (The vtable is

unlikely to change during the loop.)

The processor optimizes on the assumption that bctr is a computed jump and blr is a

subroutine return,³ although the BH hints can tweak those assumptions. Furthermore,

Windows NT requires that non-leaf subroutine returns be encoded exclusively as blr . You

are not allowed to pull fancy tricks like beqlr to perform a conditional subroutine return.

This is not a significant problem in practice because there’s usually other stuff that needs to

be done as part of the function epilogue. Adding this rule makes the exception unwinding

code easier.

For the same reason, the conditional versions of the “and link” branches are mostly useless in

practice because even if you can conditionalize the link, you still prepared the function call

unconditionally. You might have been better off just branching over the function call entirely.

Okay, so great, you have these instructions that operate on the lr and ctr registers, but how

do you actually get values in and out of them?

 mflr rt ; rt = lr
 mfctr rt ; rt = ctr

 mtlr rs ; lr = rs
 mtctr rs ; ctr = rs

The “move from/to lr/ctr” instructions let you move values into and out of the lr and ctr

registers. (Like mfxer and mtxer , these are actually shorthand for mfspr and mtspr

with the appropriate magic number for lr or ctr.)

In practice, the first instruction of a non-leaf function is mflr r0 to save the return

address, and when it’s ready to return, it will do a mtlr r0 to load up the return address in

preparation for the blr . This is pretty much the only thing the Microsoft compiler uses the

r0 register for: Transferring the return address in and out of lr.

But wait, I’m getting ahead of myself. I promised to talk about the table of contents, so let’s

do that next time.

https://blogs.msdn.microsoft.com/oldnewthing/20180816-00/?p=99505

5/5

Bonus chatter: PowerPC mnemonics are so absurd that there was even a short-lived

parody twitter account for them. Now that you’ve learned most of the instructions, you may

understand some of the more insidey jokes, like

mscdfr – Means Something Completely Different For r0

— PowerPC Instructions (@ppcinstructions) January 21, 2015

¹ Note that even if you loaded a 64-bit value into the ctr register (because you detected that

you had a 64-bit-capable processor), the test for zero or non-zero is performed only against

the least-significant 32 bits of the ctr register when the processor is in 32-bit mode (which is

what Windows NT uses).

² The assembler also provides bge (branch if greater than or equal to) as an alias for bnl

(branch if not less than). I think that’s misleading, because bge suggests that the test checks

two bits (gt and eq) and branches if either is set. But in fact it checks whether lt is clear. Now,

if the condition register was set by a comparison, then the two cases are equivalent, but if you

have been playing games with condition register flags, you can get into states where the

trichotomy of numbers breaks down.

³ The return address predictor gives the processor the ability to start speculating instructions

at the return address even before you move the return address into the lr register!

Raymond Chen

Follow

https://twitter.com/ppcinstructions
https://twitter.com/ppcinstructions/status/557938532401295360?ref_src=twsrc%5Etfw
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

