
1/2

August 16, 2018

The PowerPC 600 series, part 9: The table of contents
devblogs.microsoft.com/oldnewthing/20180816-00

Raymond Chen

We saw that the PowerPC 600 series gives you absolute addressing to the top and bottom

32KB of address space. But that doesn’t buy you much on Windows NT programs, because all

of those addresses are not usable by 32-bit programs. By convention, the r2 register contains

a value called the table of contents, which is a pointer to a list of interesting constants the

function needs. You can put addresses of global variables here, or you can put other useful

constants.

In principle, each function gets its own table of contents, but in practice, the Microsoft

compiler generates a single table of contents for the entire module, similar to what the

Itanium does. In theory, you could even put your variables directly in the table of contents

(which is what the Itanium does), but the Microsoft compiler doesn’t. It puts the table of

contents in read-only memory. In Itanium-speak you might say that every global variable is

considered large. I’m guessing this is to improve page sharing between processes since the

table of contents would otherwise be a mix of read-write data and read-only data, but it does

mean that accessing any global variable requires two memory accesses:

 lwz r3, n(r2) ; load pointer to variable from toc
 lwz r3, (r3) ; load the variable's value

The displacement field of the load instruction has a reach of ±32KB, which means that your

table of contents has a comfortable maximum size of 64KB. (You would naturally set your

table of contents pointer to be 32KB past the start of the table of contents, so that you could

take advantage of negative offsets.) But what if you have more than 16384 global objects? No

problem, because you don’t need a separate pointer in the table of contents for each global

object. You can group your global objects into chunks of 64KB and use a single pointer to

access the entire chunk. If you have 16384 pointers, each of which can access 64KB of

memory, the total amount of memory addressible from the table of contents is one gigabyte,

which is hopefully enough to cover all your global objects.

(Also, if you have a monstrous 1-gigabyte global array, you can dedicate a single table of

contents entry to that global array. You don’t need a separate entry for each 64KB chunk.)

https://devblogs.microsoft.com/oldnewthing/20180816-00/?p=99505
https://blogs.msdn.microsoft.com/oldnewthing/20090611-00/?p=17933
https://blogs.msdn.microsoft.com/oldnewthing/20150731-00/?p=90771

2/2

Note that you can have global things other than variables. For example, you’ll probably have

jump tables for switch statements and vtables for virtual functions.

Since each function requires its table of contents to be set properly, a function pointer on

PowerPC is not a pointer to the first instruction. Instead, it’s a pointer to a structure

consisting of two pointers: The first pointer points to the first instruction of the function, and

the second pointer is the table of contents for the function.¹

The sequence for calling through a function pointer goes like this:

 ; call the function pointed to by r11
 ; assumes that our function's toc is saved on the stack at n(r1)
 lwz r12, (r11) ; get the code pointer
 lwz r2, 4(r11) ; set r2 to the toc for the function being called
 mtctr r12 ; put code pointer in ctr
 bctrl ; branch to ctr and link
 lwz r2, n(r1) ; restore our toc

We load the code pointer and put it into ctr. We also load the table of contents for the target

function into r2 so it can access its global variables. We then call the function by calling

through ctr, and when the function returns, we restore our function’s r2 from wherever we

had saved it (typically the stack).

If you’re calling a function within the same module, you don’t need to update r2 because all

the functions in a module use the same table of contents.

But what if you don’t know whether the function is in the same module? For example, it

might be an import stub for a naïvely-imported function. Now, in the modern days of link-

time code generation, you can tell whether the destination is in the module or not, but in the

old days of classical compiling and linking, the only time the compiler would be certain that

the target function is in the same module is when the target function is defined in the same

translation unit. Otherwise, the compiler isn’t quite sure. It could do like the Itanium does

and always include a reload of r2 after the call returns, just in case. But that costs a memory

access, so the PowerPC does things a little differently. To dig into what happens, we need to

learn about the rest of the PowerPC calling convention, which we’ll start looking at next time.

¹ Other ABIs add a third pointer to the structure, called the “environment”. Windows NT

makes do with just two pointers.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

