
1/6

August 17, 2018

The PowerPC 600 series, part 10: Passing parameters,
function prologues and epilogues

devblogs.microsoft.com/oldnewthing/20180817-00

Raymond Chen

We saw a little bit of the Windows NT software convention with our introduction to the table

of contents. Today we’ll start looking at the conventions related to the stack. (Believe it or

not, this will connect back to the table of contents, but it’ll take a while before we get there.)

The format of the stack is as follows:

⋮

inbound param 10

inbound param 9

inbound param 8 home space

inbound param 7 home space

inbound param 6 home space

inbound param 5 home space

inbound param 4 home space

inbound param 3 home space

inbound param 2 home space

inbound param 1 home space

reserved 6

reserved 5

reserved 4

reserved 3

https://devblogs.microsoft.com/oldnewthing/20180817-00/?p=99515

2/6

reserved 2

reserved 1: previous sp ← stack pointer at function entry

saved register space
⋮

local variables
⋮

outbound parameters
beyond 8 (if any)

⋮

outbound param 8 home space

outbound param 7 home space

outbound param 6 home space

outbound param 5 home space

outbound param 4 home space

outbound param 3 home space

outbound param 2 home space

outbound param 1 home space

reserved 6

reserved 5

reserved 4

reserved 3

reserved 2

reserved 1: previous sp ← stack pointer after prologue complete

That’s a big stack.

Starting at the top of the diagram (deepest on the stack) are the stack-based parameters,

which are the parameters beyond the first 8.

Next is home space for the first 8 parameters. Those parameters are passed in registers, but

reserve space for them on the stack in case the function needs to spill them. Even if the

function has fewer than eight parameters, there is home space for all eight of them.

3/6

Integer parameters are passed in r3 through r10, and floating point parameters come in f1

through f13. The register assignment is like the Alpha AXP and MIPS, where each parameter

can go into either an integer or floating point register, and if you use one, then the other goes

unused.

After the home space come 24 bytes (6 words) of system-reserved space. One of them is

required to hold the previous stack pointer, as we’ll see soon. The others are uninitialized.

At entry to the function, the prologue needs to set up its own stack frame. It saves nonvolatile

registers into the saved variable space and then atomically updates the stack pointer and

links it to the previous stack frame. Here’s a sample prologue. I’ve added blank lines to

separate the major sections.

01ae2398 7c0802a6 mflr r0 ; move return address to r0

01ae239c 93c1fff8 stw r30,-8(r1) ; save nonvolatile register
01ae23a0 93e1fffc stw r31,-4(r1) ; save nonvolatile register

01ae23a4 9001fff4 stw r0,-0xC(r1) ; save return address

01ae23a8 9421ffb0 stwu r1,-0x50(r1) ; create stack frame

The first thing a function does is save the link register in r0 so it doesn’t lose the return

address. In my experience, the only thing the Microsoft compiler uses the r0 register for is

transferring to and from the link register.

The next thing a function does is save to the stack the nonvolatile registers it intends to use.

(Recall that r1 is the stack pointer register.) This function uses two nonvolatile registers r30

and r31, and it saves them onto the stack immediately below the stack pointer, in order. I’m

not sure if it’s a requirement of the software convention, but the Microsoft compiler always

allocates its nonvolatile registers top-down, so that the set of nonvolatile registers is a

contiguous range ending at r31.¹ Furthermore, it always saves the registers in the same

place: r31 goes on the stack first, then r30, and so on. Even if it’s not a requirement, the

Microsoft compiler is pretty consistent about it, which makes unwinding the stack in the

debugger a lot easier because you always know that, for example, the saved value of r29 is at

offset −12 from the inbound sp.²

The third step is saving the r0 register (which holds the return address). The Microsoft

compiler always stores the return address immediately below the saved registers. Again, I

don’t know if it’s a requirement, but it’s a handy thing to take advantage if you need to

manually unwind the stack.

The final step of the prologue is creating the stack frame with the stwu instruction. This

instruction stores the current stack pointer at the specified negative offset from the top of the

stack (creating the next node in the linked list) and then updates the stack pointer to the

4/6

address it just stored to. This all happens atomically in a single instruction, which means that

the linked list of stack frames is always preserved at any moment in time. This is great for

sampling profilers, which might otherwise have a hard time building a proper stack trace if it

happened to catch the prologue at a bad time.

The compiler is permitted to advance instructions from the function body proper into the

prologue, provided it doesn’t alter any nonvolatile registers or perform any branches.

The function epilogue also follows a consistent pattern:

01ae2444 7ca32b78 mr r3,r5 ; set return value

01ae2448 80010044 lwz r0,0x44(r1) ; load return address

01ae244c 83c10048 lwz r30,0x48(r1) ; restore nonvolatile register
01ae2450 83e1004c lwz r31,0x4C(r1) ; restore nonvolatile register

01ae2454 7c0803a6 mtlr r0 ; move return address to link register

01ae2458 38210050 addi r1,r1,0x50 ; pop the stack frame

01ae245c 4e800020 blr ; return

The main body of the function ends with the desired return value in r3. At this point, we

enter the epilogue.

First, the epilogue loads the return address from the stack. These offsets are different from

the ones used at the start of the function because they were saved before the frame was

pushed, but they are being restored whlie the frame is still active. Since the size of the stack

frame is 80 bytes, the values will differ by 80.

Next, the epilogue restores the nonvolatile registers.

Step three is moving the return address into the link register in preparation for the actual

return.

Step four is popping off the stack frame by moving the stack pointer back to where it was

when the function started.

The last step is to return back to the caller with the Windows NT-approved blr instruction.

Function prologues and epilogues are tightly-controlled because the system exception

dispatcher needs to be able to unwind a function’s stack even when it’s in the middle of a

prologue or epilogue. This means that the system needs to be able to reverse-execute a

prologue and forward-execute an epilogue in order to get the registers properly set up when

5/6

dispatching an exception to the caller of the function that was interrupted. (The function that

was interrupted cannot have an exception handler in place because exception handlers

cannot be active during a prologue or epilogue.)

The fact that the initial portion of the stack frame is constructed at negative offsets from the

stack pointer means that the system must have a large enough red zone to accommodate the

worst-case scenario of a function that needs to save all of the nonvolatile registers, plus the

return address.

So let’s do some math. Integer registers r14 through r31 are nonvolatile, so that’s 18 × 4 = 72

bytes for nonvolatile integer registers. Floating point registers f14 through f31 are also

nonvolatile, and floating point registers are 8 bytes in size, so that means another 18 × 8 =

144 bytes, added to the 72 we already have makes 216. And then there are the stragglers:

Parts of the condition register are also nonvolatile, and in practice you just save the

whole thing,

Similarly, the floating point control register.

The return address.

That adds twelve more bytes, bringing us to 232 bytes. Since the stack must be 8-byte

aligned, we round up to the next multiple of 8, but hey, it’s already a multiple of 8, so we’re

good. [Corrected from 16.]

Exercise: Why don’t we need to count the system reserved bytes (specifically the the link to

the previous stack frame) toward the red zone?

At the start of this entry, I promised that this would lead to the table of contents eventually.

We’re almost there. The story continues next time.

Bonus chatter: I lied when I said that the prologue cannot contain any branch instructions.

There is one branch instruction that is specifically permitted: A call to a helper function to

spill the registers. There could be a lot of registers to spill, and the software convention

permits you to use helpers function for the following operations:

Bulk-saving integer registers.

Bulk-saving floating point registers.

Bulk-restoring integer registers.

Bulk-restoring floating point registers.

These bulk save/restore functions must follow a specific format so that the exception

unwinder understands how to recover in case an interrupt occurs inside the helper. The

details are not important aside from knowing that they use the r12 register to specify where

the registers go. (Obviously they can’t use the standard calling convention because those

registers are being used by the function whose prologue is being executed!)

https://devblogs.microsoft.com/oldnewthing/#comment-1356835
https://devblogs.microsoft.com/oldnewthing/

6/6

Bonus bonus chatter: The size of the red zone is described in the ntppc.h header file as

#define STK_SLACK_SPACE 232

It didn’t explain how the number 232 was arrived at.

The x64 software conventions for Windows NT are well-documented, but I couldn’t find any

documents covering the older platforms. All of the software conventions for the PowerPC

were reverse-engineered by studying compiler output and reading very old kernel source

code.³

¹ Doing it this way allows the bulk save/restore functions to be shared among multiple

functions. Special “store multiple contiguous registers” and “load multiple contiguous

registers” instructions are available in big-endian mode, but not in little-endian mode. In

little-endian mode, you have to save them one at a time, hence the bulk save/restore helpers.

² Well, not always. If floating point registers need to be saved, they get saved first. But you

don’t see floating point in system code much, so in practice you can usually get away with

pretending they don’t exist.

³ The code has some nice diagrams in the comments about the stack layout. Too bad those

diagrams are wrong. I suspect the ABI was redesigned at some point, and the comments and

diagrams weren’t fully updated to match.

Raymond Chen

Follow

https://msdn.microsoft.com/en-us/library/7kcdt6fy.aspx
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

