
1/3

September 28, 2018

The sad history of the C++ throw(…) exception specifier
devblogs.microsoft.com/oldnewthing/20180928-00

Raymond Chen

When exceptions were introduced into the C++ language, a corresponding throw(...)

dynamic exception specifier was introduced which annotated which exceptions could be

throw by a function.

// this function might throw an integer or a pointer to char,
// but nothing else.
void foo() throw(int, char*);

This has made a lot of people very angry and has been widely regarded as a bad move.

According to the C++98 standard, if a function throws an exception not listed among the

types specified in its dynamic exception specifier, the system called the

std::unexpected() function, and the default behavior of std::unexpected() is to

terminate the program by calling std::terminate() . As a special case, throw() means

that the function shouldn’t throw any exceptions at all.

By C++11, the throw(...) dynamic exception specifier was deprecated, and in C++17, all

support for dynamic exception specifiers was removed save for the special case of throw() .

At the same time, they changed the penalty for throwing an exception when you said you

wouldn’t: the runtime calls std::terminate() directly, rather than passing through

std::unexpected() .

But of course the Microsoft C++ compiler has to do things a little bit differently.

Specifier
 C++14 and earlier

Disallowed exception thrown

Standard behavior Microsoft behavior

Nonthrowing noexcept
 noexcept(true)

std:: unexpected std:: unexpected

throw() std:: unexpected undefined behavior ⇐

Throwing noexcept(false) exception propagates exception propagates

https://devblogs.microsoft.com/oldnewthing/20180928-00/?p=99855
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/p0003r0.html#2.0
https://docs.microsoft.com/en-us/cpp/cpp/exception-specifications-throw-cpp

2/3

throw(something) std:: unexpected exception propagates ⇐

The Microsoft C++ compiler treats the throw(...) exception specifier as a promise on the

part of the programmer, but there is no enforcement. It trusts you to adhere to your self-

imposed contract. If an exception is thrown when the function promised that no exceptions

would be thrown, the behavior is undefined. If the function said that some exceptions could

be thrown, the compiler doesn’t validate that the actual thrown exception is allowed; it just

propagates the exception.

In practice, what happened is that the compiler performed optimizations on the assumption

that no disallowed exception would be thrown. The most common such optimization is that

the compiler won’t bother registering unwind codes for things that it “knows” will never

require unwinding because there are no points where an exception could be thrown prior to

the object’s destruction.

void Example()
{
 ObjectWithDestructor obj;
 obj.stuff_that_does_not_throw();
 // destructor runs here
}

If stuff_ that_ does_ not_ throw is marked as non-throwing, then the compiler can

avoid having to register obj for unwinding during exception propagation, since you

promised that no exception could escape.

And then you throw an exception and invalidate all those optimizations. The most common

visible effect of this is that an exception propagated out of a function that should never have

let an exception escape, and some object destructors failed to run.

But wait, all is not lost.

If you enable /std:c++17 , then the Microsoft C++ compiler will implement the standard

behavior for throw(...) .

Specifier
 C++17

Disallowed exception thrown

Standard behavior
Microsoft behavior

 with /std:c++17

Nonthrowing noexcept
 noexcept(true)

std:: terminate std:: terminate

throw() std:: terminate std:: terminate

Throwing noexcept(false) exception propagates exception propagates

3/3

throw(something) not supported not supported

Yes, it took a long time to get there, but better late than never.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

