
1/3

November 7, 2018

Using linker segments and __declspec(allocate(…)) to
arrange data in a specific order

devblogs.microsoft.com/oldnewthing/20181107-00

Raymond Chen

You can declare a section and then start generating data into it.

#pragma section("mydata$a", read, write)
__declspec(allocate("mydata$a")) int i = 0;

#pragma section("mydata$b", read, write)
__declspec(allocate("mydata$b")) int j = 0;

The #pragma section directive lets you define a new section and assign attributes. You

can then place data into that section with the __declspec(allocate(...)) attribute.

When the linker combines all the little bits and pieces of data, it does the following:

It takes the section names and splits them at the first dollar sign. (If there is no dollar

sign in the section name, then the entire string is treated as the “before the first dollar

sign” portion.)

The portion before the dollar sign is the name of the section in the generated module.

The portion after the dollar sign, if any, is used to sort the fragments within a section.

It is common to take advantage of the “sorts the data fragments alphabetically” step by

generating data into a carefully-named sequence of sections so that they can iterate over all

the objects in the middle section:

https://devblogs.microsoft.com/oldnewthing/20181107-00/?p=100155
http://www.keil.com/support/man/docs/armlink/armlink_chunkpge1406298379992.htm
https://blogs.msdn.microsoft.com/larryosterman/2004/09/27/when-i-moved-my-code-into-a-library-what-happened-to-my-atl-com-objects/

2/3

typedef void (*INITIALIZER)();

#pragma section("mydata$a", read)
__declspec(allocate("mydata$a")) const INITIALIZER firstInitializer = nullptr;

#define ADD_INITIALIZER_TO_SECTION(fn, s) \
 __declspec(allocate("mydata$" s)) \
 const INITIALIZER initializer##fn = fn

#pragma section("mydata$g", read)
#pragma section("mydata$m", read)
#pragma section("mydata$t", read)

#define ADD_EARLY_INITIALIZER(fn) ADD_INITIALIZER_TO_SECTION(fn, "g")
#define ADD_INITIALIZER(fn) ADD_INITIALIZER_TO_SECTION(fn, "m")
#define ADD_LATE_INITIALIZER(fn) ADD_INITIALIZER_TO_SECTION(fn, "t")

#pragma section("mydata$z", read)
__declspec(allocate("mydata$z")) INITIALIZER lastInitializer = nullptr;

// In various files

// file1.cpp
ADD_INITIALIZER(Function1);

// file2.cpp
ADD_INITIALIZER(Function2);
ADD_LATE_INITIALIZER(DoThisLater2);

// file3.cpp
ADD_INITIALIZER(Function3);
ADD_EARLY_INITIALIZER(DoThisSooner3);

// file4.cpp
ADD_EARLY_INITIALIZER(DoThisSooner4);
ADD_LATE_INITIALIZER(DoThisLater4);

The idea is that anybody who needs to add an initializer declares a function pointer in the

mydata$g , mydata$m , or mydata$t section. The linker will collect all of those function

pointers from same-named sections together, and then sort the sections, so that the final

order of fragments in the mydata section is

mydata$a firstInitializer main.obj

mydata$g DoThisSooner3 file3.obj unspecified
 order

DoThisSooner4 file4.obj

mydata$m Function2 file2.obj unspecified
 order

3/3

Function1 file1.obj

Function3 file3.obj

mydata$t DoThisLater2 file2.obj unspecified
 order

DoThisLater4 file4.obj

mydata$z lastInitializer main.obj

The Initialize All The Things function then walks through all the function pointers

between first Initializer and last Initializer and calls each one.

The alphabetical ordering rule ensures that the mydata$a fragment comes first, so that

first Initializer has the lowest address. Next comes the mydata$g fragments, which

contain the early initializers. Following that are the mydata$m fragments, which are the

regular initializers. Next are the mydata$t fragments, which contain the late initializers.

And finally the mydata$z fragment, which contains last Initializer .

Now that we understand the principle behind section grouping and sorting, we can look at

the gotchas next time.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/20181108-00/?p=100165
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

