
1/2

November 14, 2018

What’s the point of passing a never-signaled event to
MsgWaitForMultipleObjects?

devblogs.microsoft.com/oldnewthing/20181114-00

Raymond Chen

In the Quake source code, there is this variable tevent whose usage is rather strange.

49 static HANDLE tevent;

It is initialized at program startup to a newly-created unsignaled event.

660 tevent = CreateEvent(NULL, FALSE, FALSE, NULL);
661
662 if (!tevent)
663 Sys_Error ("Couldn't create event");

and it is cleaned up a program shutdown:

267 if (tevent)
268 CloseHandle (tevent);

and the only use of it is in this call to Msg Wait For Multiple Objects :

535 MsgWaitForMultipleObjects(1, &tevent, FALSE, time, QS_ALLINPUT);

In true angry developer fashion, this is in a function with the banner

520 ===
521
522 WINDOWS CRAP
523
524 ===

Anyway, when the bWaitAll parameter is FALSE , the Msg Wait For Multiple Objects

function waits for one of three things to happen:

One of the handles is signaled,

The queue is in a state specified by the filter, or

The timeout elapses.

https://devblogs.microsoft.com/oldnewthing/20181114-00/?p=100215
https://github.com/id-Software/Quake/blob/bf4ac424ce754894ac8f1dae6a3981954bc9852d/QW/client/sys_win.c#L49
https://github.com/id-Software/Quake/blob/bf4ac424ce754894ac8f1dae6a3981954bc9852d/QW/client/sys_win.c#L660
https://github.com/id-Software/Quake/blob/bf4ac424ce754894ac8f1dae6a3981954bc9852d/QW/client/sys_win.c#L661
https://github.com/id-Software/Quake/blob/bf4ac424ce754894ac8f1dae6a3981954bc9852d/QW/client/sys_win.c#L662
https://github.com/id-Software/Quake/blob/bf4ac424ce754894ac8f1dae6a3981954bc9852d/QW/client/sys_win.c#L663
https://github.com/id-Software/Quake/blob/bf4ac424ce754894ac8f1dae6a3981954bc9852d/QW/client/sys_win.c#L267
https://github.com/id-Software/Quake/blob/bf4ac424ce754894ac8f1dae6a3981954bc9852d/QW/client/sys_win.c#L268
https://github.com/id-Software/Quake/blob/bf4ac424ce754894ac8f1dae6a3981954bc9852d/QW/client/sys_win.c#L535
https://github.com/id-Software/Quake/blob/bf4ac424ce754894ac8f1dae6a3981954bc9852d/QW/client/sys_win.c#L520
https://github.com/id-Software/Quake/blob/bf4ac424ce754894ac8f1dae6a3981954bc9852d/QW/client/sys_win.c#L521
https://github.com/id-Software/Quake/blob/bf4ac424ce754894ac8f1dae6a3981954bc9852d/QW/client/sys_win.c#L522
https://github.com/id-Software/Quake/blob/bf4ac424ce754894ac8f1dae6a3981954bc9852d/QW/client/sys_win.c#L523
https://github.com/id-Software/Quake/blob/bf4ac424ce754894ac8f1dae6a3981954bc9852d/QW/client/sys_win.c#L524

2/2

Since the code never signals the event, the first case neve occurs, so the only things that will

cause Msg Wait For Multiple Objects to return are the second or third cases.

The dummy event is not actually necessary.

MsgWaitForMultipleObjects(0, NULL, FALSE, time, QS_ALLINPUT);

If bWaitAll is TRUE , then the Msg Wait For Multiple Objects function waits for one of

two things to happen:

All of the handles is signaled and the queue is in a state specified by the filter, or

The timeout elapses.

If you pass no handles, then the first part of the first case is vacuously satisfied (due to the

magic properties of the empty set), so the things that will cause the function to return are

either that the queue is in a required state or the timeout elapses.

The fact that the handle count can be any value up to MAXIMUM_ WAIT_ OBJECTS minus

one gives you some insight into the internal implementation of the Msg Wait For Multiple ‐

Objects function: It takes the handle array you pass, and adds another handle that is

signaled when the queue is in the desired state. It then calls the Wait For Multiple Objects

with the same bWaitAll parameter. That explains why passing bWaitAll = TRUE

requires all the handles to be signaled and the queue to be in the requested state.

If you don’t want to rely on the magical properties of the empty set, you could instead use a

handle that you already know will never be signaled: You can use Get Current Process() or

Get Current Thread() . The current process pseudohandle and current thread

pseudohandle will become signaled when the process or thread terminates, but this is code

running on that thread in that process. The thread cannot outlive itself.

Bonus chatter 2: Here’s why I’m in the Quake credits.

Raymond Chen

Follow

https://blogs.msdn.microsoft.com/larryosterman/2004/06/02/things-you-shouldnt-do-part-4-msgwaitformultipleobjects-is-a-very-tricky-api/
https://blogs.msdn.microsoft.com/oldnewthing/20151111-00/?p=91972
https://github.com/id-Software/Quake/blob/bf4ac424ce754894ac8f1dae6a3981954bc9852d/WinQuake/data/MANUAL.TXT#L1019
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

