
1/4

November 29, 2018

Taking advantage of the ordering guarantees of the LINQ
GroupBy method

devblogs.microsoft.com/oldnewthing/20181129-00

Raymond Chen

A customer wanted to group a set of data by one field, and within each group, sort the data by

another field, and then sort the groups by that second field.

For example, given the following data set:

Name Time

Charles 11

Charles 21

Alice 20

Charles 23

Alice 29

Alice 13

Charles 17

Bob 20

Alice 13

Bob 12

Alice 26

Bob 18

Charles 18

Bob 28

Alice 23

https://devblogs.microsoft.com/oldnewthing/20181129-00/?p=100355

2/4

Bob 13

We group by name:

Name Time

Alice 20

Alice 29

Alice 13

Alice 13

Alice 26

Alice 23

Bob 20

Bob 12

Bob 18

Bob 28

Bob 13

Charles 11

Charles 21

Charles 23

Charles 17

Charles 18

And then we sort each person’s time, shortest first.

Name Time

Alice 13

Alice 13

Alice 20

3/4

Alice 23

Alice 26

Alice 29

Bob 12

Bob 13

Bob 18

Bob 20

Bob 28

Charles 11

Charles 17

Charles 18

Charles 21

Charles 23

And then we sort the people by their best time. Charles’s best time is 11 seconds, which is best

overall, so his times go first. Bob’s best time is 12 seconds, so his group goes next. Alice’s best

time is 13 seconds, so her group is last.

Name Time

Charles 11

Charles 17

Charles 18

Charles 21

Charles 23

Bob 12

Bob 13

Bob 18

Bob 20

4/4

Bob 28

Alice 13

Alice 13

Alice 20

Alice 23

Alice 26

Alice 29

So we have a three-step LINQ query, where we group, and then sort each group, and then

sort the groups.

var results =
 data.GroupBy(x => x.Name) // group by name
 .Select(g => g.OrderBy(x => x.Time)); // sort each group
 .OrderBy(g => g.First()) // sort the groups by best time
 .SelectMany(g => g); // flatten the groups

The last step is to use SelectMany to convert the groups back into their individual

members. This takes advantage of the fact that IGrouping<TKey, out TElement> , derives

from IEnumerable<TElement> , so you can use the group as a collection.

But you can reduce this to a two-step operation: First sort globally by time, and then group

them. The Group By method is documented as reporting the groups in the order of first

appearance, so this ensures that the fastest group comes first.

var results =
 data.OrderBy(x => x.Time) // sort globally by time
 .GroupBy(x => x.Name) // group by name (best time first)
 .SelectMany(g => g); // flatten the groups

It does slightly more work than the three-step query because it sorts the entire collection,

even though it needed only to sort each group. But it looks slicker, and might even be easier

to understand. Provided you understand that the grouping is stable.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

