
1/3

December 7, 2018

The case of the buffer overflow vulnerability that was
neither a buffer overflow nor a vulnerability

devblogs.microsoft.com/oldnewthing/20181207-00

Raymond Chen

A security vulnerability report claimed to have found a buffer overrun. Their instructions

were to perform a specific sequence of operations in Explorer while watching the output in

the debugger:

pcshell\shell\explorer\something.cpp(80)\explorer.exe!00007FF813D017E2: (caller:
00007FF813CB690C) ReturnHr(7) tid(b2c) 80070002 The system cannot find the file
specified
pcshell\shell\explorer\something.cpp(80)\explorer.exe!00007FF813D017E2: (caller:
00007FF813CB690C) ReturnHr(8) tid(b2c) 80070002 The system cannot find the file
specified
pcshell\shell\explorer\something.cpp(80)\explorer.exe!00007FF813D017E2: (caller:
00007FF813CB690C) ReturnHr(9) tid(b2c) 80070002 The system cannot find the file
specified

Oh, I forgot to mention that the finder didn’t copy the text out of the debugger. Nor did they

attach a screen shot of the debugger. Nope, they attached a digital photo of their CRT

monitor, complete with Moiré pattern.

I’ll remove the Moiré pattern for you from this and all the other screen shots. I’ll also do the

organic OCR¹ and convert it to text. Because I’m a nice guy that wants his writing to be

readable. (Unlike the finder, apparently.)

pcshell\shell\explorer\something.cpp(80)\explorer.exe!00007FF813D017E2: (caller:
00007FF813CB690C) ReturnHr(7) tid(b2c) 80070002 The system cannot find the file
specified
pcshell\shell\explorer\something.cpp(80)\explorer.exe!00007FF813D017E2: (caller:
00007FF813CB690C) ReturnHr(8) tid(b2c) 80070002 The system cannot find the file
specified
pcshell\shell\explorer\something.cpp(80)\explorer.exe!00007FF813D017E2: (caller:
00007FF813CB690C) ReturnHr(9) tid(b2c) 80070002 The system cannot find the file
specified

Okay, this is some debug spew that’s logging a File not found error.

https://devblogs.microsoft.com/oldnewthing/20181207-00/?p=100435
http://en.wikipedia.org/wiki/Moir%C3%A9_pattern

2/3

The finder, however, didn’t characterize it as debug spew, but rather described it as “an

exception”. Their next step was to set a breakpoint on the reported address

00007FF813D017E2 and repeat the scenario, and then when the breakpoint hits, take a

stack trace.

0:002> k
Child-SP
00 0000009c`aa2ffae0 00007ff8`13cb690c explorer!
<lambda_bab32d760b0e6e31>::operator()+0x704c2
01 0000009c`aa2ffb90 00007ff8`13cb5eed
explorer!Windows::Internal::ComTaskPool::CThread::_ThreadProc+0x228
02 0000009c`aa2ffc80 00007ff8`13cb5e39
explorer!Windows::Internal::ComTaskPool::CThread::s_ExecuteThreadPr
03 0000009c`aa2ffcd0 00007ff8`91adc774
explorer!Windows::Internal::ComTaskPool::CThread::s_ThreadProc+0x9
04 0000009c`aa2ffd00 00007ff8`91defd51 kernel32!BaseThreadInitThunk+0x14
05 0000009c`aa2ffd30 00000000`00000000 ntdll!RtlUserThreadStart+0x21

A little disassembling around the first return address reveals

00007ff8`13cb6906 ff1557351100 call qword ptr [explorer!_guard_dispatch_icall_ptr
(00007ff8`3cbfe08)]
00007ff8`13cb690c 488b4b50 mov rcx, qword ptr [rbx+50h]

The finder explained that “the function is _guard_ dispatch_ icall_ fptr , not the

lambda_ bab32d... . Decompiling the code at _guard_ dispatch_ icall_ fptr ,

you’ll see the buffer overflow.” Here’s the code in question:

0:002> u 00007ff8`13cbfe08
explorer!_guard_dispatch_icall_fptr:
00007ff8`13cbfe08 206388 and byte ptr [rbx-78h],ah
00007ff8`13cb6e0b 9a ??? ⇐

In the screen shot, they highlighted the second line. And that was the end of their report.

It seems that the finder saw a debug message, and then started fumbling around. They saw

that the disassembler printed ??? which they interpreted as a clear sign of a security

vulnerability.

But that’s not what they found.

First of all, the messages that appear on the debugger are some error logging trace messages.

They aren’t exceptions.

Next, the instruction prior to the return address is an indirect call, but they somehow thought

this was a label, because they said that the function was misreported by the debugger as

lambda_ bab32d... when it was actually _guard_ dispatch_ icall_ fptr . Nope,

3/3

the function really is lambda_ bab32d... . What it’s doing is calling through the function

pointer _guard_ dispatch_ icall_ fptr .

Next, the finder misread the disassembly. In Intel notation, square brackets around an

effective address mean “the memory stored at this address”. The call qword ptr

[_guard_ dispatch_ icall_ fptr] doesn’t mean “call the function

guard dispatch_ icall_ fptr .” It means “read eight bytes from

guard dispatch_ icall_ fptr , treat those eight bytes as a 64-bit value, interpret

that value as an address, and call to that address.” The bytes you see at

guard dispatch_ icall_ fptr are not code; they are data. Disassembling them as

code is meaningless.

So +1 on the finder for resourcefulness and curiosity. But −1 for not really understanding

what you are doing, −1 for not checking your work with a colleague before sending it in, and

−1 for poor presentation.

¹ In other words, I used my eyeballs.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

