
1/3

January 4, 2019

A trick for keeping an object alive in a C++ lambda while
still being able to use the this keyword to refer to it

devblogs.microsoft.com/oldnewthing/20190104-00

Raymond Chen

You may want to capture your this  pointer into a C++ lambda, but that captures the raw

pointer. If you need to extend the object’s lifetime, you will need to capture a strong

reference. For plain C++ code, this would be a std::shared_ ptr . For COM objects, this

is usually some sort of smart pointer class like ATL:: CComPtr ,

Microsoft:: WRL:: ComPtr , or winrt:: com_ptr .

https://devblogs.microsoft.com/oldnewthing/20190104-00/?p=100635


2/3

 // std::shared_ptr 
 auto callback = [self = shared_from_this()]() { 
   self->DoSomething(self->m_value); 
   self->DoSomethingElse(); 
  }; 

 // WRL::ComPtr 
 auto callback = [self = 
                  Microsoft::WRL::ComPtr<ThisClass>(this)]() { 
   self->DoSomething(self->m_value); 
   self->DoSomethingElse(); 
 }; 

 // ATL::CComPtr 
 auto callback = [self = 
                  ATL::CComPtr<ThisClass>(this)]() { 
   self->DoSomething(self->m_value); 
   self->DoSomethingElse(); 
 }; 

 // winrt::com_ptr 
 template<typename T> 
 auto to_com_ptr(T* p) noexcept 
 { 
   winrt::com_ptr<T> ptr; 
   ptr.copy_from(p); 
   return ptr; 
 } 

 auto callback = [self = to_com_ptr(this)] { 
   self->DoSomething(self->m_value); 
   self->DoSomethingElse(); 
 }; 

A common pattern for the “capture a strong reference to yourself” is to capture both a strong

reference and a raw this . The strong reference keeps the this  alive, and you use the

this  for convenient access to members.



3/3

 // std::shared_ptr 
 auto callback = [lifetime = std::shared_from_this(this), 
                  this]() { 
   DoSomething(m_value);  // was self->DoSomething(self->m_value); 
   DoSomethingElse();     // was self->DoSomethingElse(); 
  }; 

 // WRL::ComPtr 
 auto callback = [lifetime = 
                  Microsoft::WRL::ComPtr<ThisClass>(this), 
                  this]() { 
   DoSomething(m_value);  // was self->DoSomething(self->m_value); 
   DoSomethingElse();     // was self->DoSomethingElse(); 
 }; 

 // ATL::CComPtr 
 auto callback = [lifetime = 
                  ATL::CComPtr<ThisClass>(this), 
                  this]() { 
   DoSomething(m_value);  // was self->DoSomething(self->m_value); 
   DoSomethingElse();     // was self->DoSomethingElse(); 
 }; 

 // winrt::com_ptr 
 auto callback = [lifetime = to_com_ptr(this), 
                  this]() { 
   DoSomething(m_value);  // was self->DoSomething(self->m_value); 
   DoSomethingElse();     // was self->DoSomethingElse(); 
 }; 

I like to give the captured strong reference a name like lifetime  to emphasize that its

purpose is to extend the lifetime of the this  pointer. Otherwise, somebody might be

tempted to “optimize” out the seemingly-unused variable.

Raymond Chen

Follow

 

 

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

