
1/5

January 22, 2019

The Intel 80386, part 2: Memory addressing modes
devblogs.microsoft.com/oldnewthing/20190121-00

Raymond Chen

All of the memory addressing mode demonstrations will be some form of this instruction:

 MOV somewhere, 0

which stores a zero somewhere.

In practice, the registers used to calculate effective addresses will be 32-bit registers.¹

All the addressing modes look like

 size PTR [something]

where the size specifies the number of bytes being accessed, and the something specifies

which memory you want to access.

If you are simply reading disassembly, then you don’t need to know the rules about which

combinations of registers are legal for which types of addressing modes. You can assume the

compiler generated valid code. From a disassembly point of view, you can treat all addressing

modes as

 size PTR [expression]

Specifically,

 BYTE PTR [expression] ; *(int8_t*)(expression)
 WORD PTR [expression] ; *(int16_t*)(expression)
 DWORD PTR [expression] ; *(int32_t*)(expression)
 QWORD PTR [expression] ; *(int64_t*)(expression)
 TWORD PTR [expression] ; *(int80_t*)(expression)

Examples:

 MOV BYTE PTR ds:[01234567h], 0 ; *(int8_t*)(0x01234567) = 0
 MOV WORD PTR [eax], 0 ; *(int16_t*)(eax) = 0
 MOV DWORD PTR [ecx*2+2Ch], 0 ; *(int32_t*)(ecx*2+0x2c) = 0
 MOV DWORD PTR [eax+ebx*4-12h], 0 ; *(int32_t*)(eax+ebx*4-0x12) = 0

https://devblogs.microsoft.com/oldnewthing/20190121-00/?p=100755

2/5

Note that there is a ds: prefix on the first instruction. For some reason, the Windows

disassembler doesn’t trust itself when performing access to an absolute memory address and

prints a superfluous ds: prefix on the instruction. Don’t worry about it. For now.

The 80386 permits unaligned memory access, except where noted. Unaligned access may be

slower than aligned access, however.

If all you care about is reading disassembly, then that is all you really need to know for now.

The rest of today is digging into the various types of expressions you are allowed to put inside

the square brackets.

Absolute: The address is a constant.

 MOV BYTE PTR ds:[01234567h], 0 ; *(int8_t*)(0x01234567) = 0

Register indirect: The address is the value of a register.

 MOV WORD PTR [eax], 0 ; *(int16_t*)eax = 0

Register indirect with short displacement: The address is the value of a register plus a signed

8-bit immediate.

 MOV DWORD PTR [eax-7], 0 ; *(int32_t*)(eax-7) = 0

Register indirect with long displacement: The address is the value of a register plus a 32-bit

signed immediate.²

 MOV BYTE PTR [eax+123h], 0 ; *(int8_t*)(eax+0x123) = 0

The remaining memory addressing modes are more complicated.

Register indexed: The address is the sum of the values of two registers.

 MOV BYTE PTR [eax+ebx], 0 ; *(int8_t*)(eax+ebx) = 0

Register indexed with short displacement: The address is the sum of the values of two

registers plus a signed 8-bit immediate.

 MOV WORD PTR [eax+ebx+12h], 0 ; *(int16_t*)(eax+ebx+0x12) = 0

Register indexed with long displacement: The address is the sum of the values of two

registers plus a signed 32-bit immediate.

 MOV DWORD PTR [eax+ebx+1234h], 0 ; *(int32_t*)(eax+ebx+0x1234) = 0

Register scaled: The address is the value of a register multiplied by 2, 4, or 8.

 MOV BYTE PTR [eax*2], 0 ; *(int8_t*)(eax*2) = 0

3/5

Register scaled with short displacement: The address is the value of a register multiplied by

2, 4, or 8, plus a signed 8-bit immediate.

 MOV WORD PTR [eax*4+2], 0 ; *(int16_t*)(eax*4+2) = 0

Register scaled with long displacement: The address is the value of a register multiplied by

2, 4, or 8, plus a signed 32-bit immediate.

 MOV BYTE PTR [eax*4+01234567h], 0 ; *(int8_t*)(eax*4+0x1234567) = 0

Register scaled indexed: The address is the value of a register plus the value of a register

multiplied by 2, 4, or 8.

 MOV WORD PTR [eax+ebx*2], 0 ; *(int16_t*)(eax+ebx*2) = 0

Register scaled indexed with short displacement: The address is the value of a register, plus

the value of a register multiplied by 2, 4, or 8, plus a signed 8-bit immediate.

 MOV BYTE PTR [eax+ecx*2-8], 0 ; *(int8_t*)(eax+ecx*2-8) = 0

Register scaled indexed with long displacement: The address is the value of a register, plus

the value of a register multiplied by 2, 4, or 8, plus a signed 32-bit immediate.

 MOV DWORD PTR [eax+ecx*2+01234567h], 0 ; *(int32_t*)(eax+ecx*2+0x1234567) = 0

The ebp register cannot be used with register indirect addressing because its encoding

pattern is used to indicate that the addressing mode is one of the complicated ones. (These

complicated ones use a so-called SIB, or scaled index byte, to help encode the operands.) If

you want to perform a register indirect access through ebp, you can get the same effect by

using a register indirect with displacement, and specify a displacement of zero.

The Microsoft assembler³ allows you to specify the terms in any order.

 MOV DWORD PTR [eax+ebx*2+1234h], 0 ; *(int32_t*)(eax+ebx*2+0x1234) = 0
 MOV DWORD PTR [ebx*2+eax+1234h], 0 ; *(int32_t*)(eax+ebx*2+0x1234) = 0
 MOV DWORD PTR [1234h+ebx*2+eax], 0 ; *(int32_t*)(eax+ebx*2+0x1234) = 0

It also allows you to move a value out of the brackets, or to have multiple sets of brackets, in

which case the values are combined via addition.

; assume "array" is a global variable

 MOV DWORD PTR array[ebx*2], 0 ; *(int32_t*)(array+ebx*2) = 0
 MOV DWORD PTR array[4], 0 ; *(int32_t*)(array+4) = 0
 MOV DWORD PTR [ebx*2][eax][4], 0 ; *(int32_t*)(eax+ebx*2+4) = 0

You can omit the square brackets if the reference is to a global variable. The assembler

assumes you want to access the memory at that address and inserts the brackets

automatically.

4/5

; assume "array" is a global variable

 MOV DWORD PTR [array], 0 ; *(int32_t*)(array) = 0
 MOV DWORD PTR array, 0 ; *(int32_t*)(array) = 0

You can also omit the size PTR if the size of the operand can be inferred. For example,

most instructions have the rule that the source and destination be the same size. If one of the

arguments has an ambiguous size, the assembler may be able to infer its size from the other

argument. Examples:

 MOV [eax+ebx*2], ecx ; *(int32_t*)(eax+ebx*2) = ecx

; assume "array" is a global variable of type DWORD

 MOV array[eax], 0 ; *(int32_t*)(array+eax) = 0

In the first example, the assembler infers that you meant DWORD PTR because the other

operand is a 32-bit register. In the second example, the assembler infers that you meant

DWORD PTR because the array variable is of type DWORD .

There are some instructions that have implied memory address operands; we’ll discuss those

as they arise.

The debugger does not use any of the above shorthands. It always specifies the memory size

explicitly, and it always uses square brackets to indicate a memory access. These two

instructions are quite different:

 MOV DWORD PTR [eax], 0 ; *(int32_t*)eax = 0
 MOV eax, 0 ; eax = 0

Next time, we’ll look at the flags register.

¹ It is technically legal to use 16-bit registers to calculate the effective address, but your

options are much more limited. Furthermore, only the least significant 16 bits of the result

are used as the effective address, so the exercise is already pointless because the bottom

64KB of address space is left unmapped. You went to all the effort of calculating an address

that cannot be used.

² You might wonder why we specify that the immediate is signed, since there is no sign

extension from a 32-bit value to a 32-bit value. But the disassembler knows that it’s signed,

because it displays values greater than 7FFFFFFFFh as negative offsets.

³ Note that other assemblers, most notably NASM, follow different rules from the Microsoft

assembler (MASM).

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/20190123-00/?p=100765
https://devblogs.microsoft.com/oldnewthing/20090611-00/?p=17933
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

5/5

