
1/3

January 25, 2019

The Intel 80386, part 5: Logical operations
devblogs.microsoft.com/oldnewthing/20190124-00

Raymond Chen

The next group of instructions we’ll look are the bitwise logical operation.

 AND r/m, r/m/i ; d &= s, set flags

 OR r/m, r/m/i ; d |= s, set flags

 XOR r/m, r/m/i ; d ^= s, set flags

 TEST r/m, r/m/i ; calculate d & s, set flags

 NOT r/m ; d = ~d, do not set flags

The AND , OR , and XOR instructions set flags based on the numeric value of the result;

carry and overflow are always clear.

The TEST instruction is the same as AND , except that the result is thrown away rather than

being stored back into the destination. You can say that AND is to TEST as SUB is to

CMP .

A quirk of the TEST instruction is that it does not support an 8-bit immediate with sign

extension. The immediate must be the same size as the other operand. This means that you

can save instruction encoding space by using a smaller data size:

 TEST DWORD PTR [rax+10h], 40000000h ; 7-byte instruction

 TEST BYTE PTR [rax+13h], 40h ; 4-byte instruction

If you do this, you will run afoul of the store-to-load forwarder. Fortunately, the 80386

doesn’t have one.

We will learn later that moving constants into registers requires a large instruction encoding.

To avoid this, you may see two idioms for setting a register to zero: You can subtract it from

itself, or you can exclusive-or it with itself.

 SUB eax, eax ; set eax = 0, set flags

 XOR eax, eax ; set eax = 0, set flags

https://devblogs.microsoft.com/oldnewthing/20190124-00/?p=100795
https://devblogs.microsoft.com/oldnewthing/

2/3

The 80386 doesn’t really care either way, but later versions of the processor recognize the

“ XOR a register with itself” idiom and special-case it to avoid the dependency on the

previous value of the register. Therefore, you’ll see the XOR version in compiler-generated

code.

The next group of instructions is the bit-testing group.

 BT r/m, r/i ; copy bit s of d to CF

 BTS r/m, r/i ; copy bit s of d to CF and set

 BTR r/m, r/i ; copy bit s of d to CF and reset

 BTC r/m, r/i ; copy bit s of d to CF and complement

The BT instruction tests a bit (lowest-order bit is bit zero) of the destination operand to the

carry flag. If the destination is a register, then the bit number is taken mod n, where n is the

register size. If the destination is memory, then the memory is considered a packed bit array,

and bit s % 8 of byte m + (s / 8) is copied.¹ For example,

 BT eax, 17 ; copy bit 17 of eax to carry

 SBB ecx, -1 ; ecx -= -1 + CF

The effect of this sequence of operations is to increment the ecx register if bit 17 of eax is

clear: If the bit is not set, then the BT results in carry clear, so the SBB instruction

subtracts −1 from ecx, which has the effect of adding 1. If the bit is set, then the BT results in

carry set, so the SBB instruction subtracts −1 from ecx, and then subtracts one more. Some

algebra shows that ecx − (−1) −1 = ecx + 1 −1 = ecx, so there is no net change to the ecx

register.

The BTS , BTR , and BTC instructions copy the bit to the carry flag, and then set, reset, or

toggle the bit that was tested. I haven’t seen the compiler generate these instructions, so you

probably don’t need to know them.

Next are the shift instructions.

 SHL r/m, CL/i ; d = d << s, set flags

 SHR r/m, CL/i ; d = d >> s (zero-fill), set flags

 SAR r/m, CL/i ; d = d >> s (sign-fill), set flags

The SHL instructions shifts left, The SHR instructions shifts right with zero fill (unsigned

shift), and the The SAR instructions shifts right with sign fill (signed shift).

The shift amount can be a constant (the encoding with 1 is more compact than the encoding

with other constants), or it can be a variable in the cl register. No other register can be used

to specify the shift amount. The shift amount is taken mod 32.

The last bit shifted out is placed in the carry flag. If the shift amount is the immediate 1, then

the overflow flag is set if the sign bit changed. (If the shift amount is not the immediate 1,

then the overflow flag is undefined.) The zero, sign, and parity flags are set based on the

3/3

result.

Next come the double shift instructions.

 SHLD r/m, r, CL/i ; d = d << t, fill from s, set flags

 ; n = 16, 32

 SHRD r/m, r, CL/i ; d = d >> t, fill from s, set flags

 ; n = 16, 32

The shift left double and shift right double instruction shift the destination by the amount

specified by the third operand (which must be a constant or the cl register) and fills in the

bits from the second operand. The SHLD instruction fills with the high-order bits of s, and

the SHRD instruction fills with the low-order bits of s. The last bit shifted out is copied to the

carry flag. The shift amount is taken mod 32.

Although n can be 16, you won’t see it in practice, so there’s no point mentioning that the

behavior is undefined if the shift amount (mod 32) is greater than 16.

Okay, so those were the logical operations. Next time, we’ll look at data transfer instructions.

¹ Technically, it is bit s % n of n-bit unit m + (s / n). This means that

 MOV ecx, 32

 BT DWORD PTR [eax], ecx

will read four bytes from [eax+4] to [eax+7] and then test bit 0 of the value. Note that

the bytes from [eax+5] to [eax+7] do not participate in the bit test, but they must still be

accessible, or you will take an access violation.

Raymond Chen

Follow

http://devblogs.microsoft.com/oldnewthing/20190128-00/?p=100805
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

