
1/2

January 31, 2019

The Intel 80386, part 9: Stack frame instructions
devblogs.microsoft.com/oldnewthing/20190130-00

Raymond Chen

There are a pair of specialized instructions for creating and tearing down stack frames.

 ENTER i16, 0 ; push ebp
 ; mov ebp, esp
 ; sub esp, (uint16_t)i16

The ENTER instruction sets up a stack frame for a new subroutine. It combines three

instructions into one, so that what used to be encoded in eight bytes (1 + 2 + 5) is now

encoded in four. However, even on the 80386, the combination instruction executes more

slowly than the three component instructions, so this was always a size optimization, not a

speed optimization.

 LEAVE ; mov esp, ebp
 ; pop ebp

The LEAVE instruction tears down the stack frame by reversing the effects of the ENTER

instruction. This is a one-byte instruction that replaces two instructions that together require

three bytes (2 + 1), so it is a size optimization. But it also executes faster than the two

instructions it replaces, so it is also a speed optimization.

Modern compilers avoid the ENTER instruction but keep the LEAVE instruction.

Bonus chatter: What’s with the second operand of the ENTER instruction?

In C code, the second operand is always zero because C doesn’t support lexically-nested

procedures with inherited stack frames. So in practice, you will always see zero as the second

parameter.

The second parameter can go up to 15, and it represents the number of additional values

pushed onto the stack after pushing ebp.

 ENTER i16, n ; push ebp
 ; sub ebp, 4 ⎱ n times
 ; push [ebp] ⎰
 ; mov ebp, esp
 ; sub esp, (uint16_t)i16

https://devblogs.microsoft.com/oldnewthing/20190130-00/?p=100835

2/2

This means that the ENTER instruction can read as many as fifteen 32-bit values from

memory and can write as many as sixteen 32-bit values to memory. That’s a lot of memory

access for a single instruction.

Next time, we’ll look at atomic operations and memory alignment.

Raymond Chen

Follow

http://devblogs.microsoft.com/oldnewthing/20190201-00/?p=100845
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

