
1/2

February 1, 2019

The Intel 80386, part 10: Atomic operations and memory
alignment

devblogs.microsoft.com/oldnewthing/20190131-00

Raymond Chen

Memory access on the 80386 to misaligned locations are supported, although they will

operate more slowly than their aligned counterparts. If a memory access straddles a page

boundary, an access violation will be raised if either page does not support the desired

operation (not readable or not writable), and the instruction will not appear to have started.

The instruction does not partially-execute before the exception is raised.

If you are unlucky, and your misalignment straddles a page boundary, you can incur multiple

page faults until pages on both sides of the boundary are simultaneously ready to accept the

operation. If you are super-unlucky, this state may never be achieved and your program will

just keep page faulting on that same instruction over and over again until the user terminates

it.

Although 80386 does not support symmetric multiprocessor operations, it does support

coprocessor operations as well as direct memory access (DMA), so you still need to be aware

of atomicity.

Storing values to memory and reading values from memory are atomic operations.¹ If a

competing processor writes to or reads the same memory, the result will be completely one

value or the other, never a mix of the two.

This atomicity does not extend by default to read-modify-write operations, however.

   INC     [value]     ; may conflict with other processors 

It’s possible that another processor could write to the memory between the read and the

write of the INC  instruction.

To prevent another processor from accessing the memory during a read-modify-write

memory operation, insert a LOCK  prefix in front of the instruction. This causes the read-

modify-write sequence to occur atomically.

   LOCK INC [value]    ; increment atomically 

https://devblogs.microsoft.com/oldnewthing/20190131-00/?p=100845
https://blogs.msdn.microsoft.com/oldnewthing/20040827-00/?p=38033


2/2

Any memory operation can be prefixed with a LOCK , and the processor will prevent any

other processors from accessing the memory for the duration of that instruction. This works

even for unaligned memory accesses!

The LOCK  prefix is superfluous for simple reads and writes, since those are already atomic.

It adds value only for read-modify-write instructions.

The LOCK  prefix is also superfluous for the XCHG  instruction, because the processor

automatically locks the bus during an exchange. This automatic lock is for backward

compatbility purposes, because XCHG  was a common way to perform test-and-set

operations on earlier versions of the processor.

Note that many atomic operations are not available in the form we have become accustomed

to: Although you can perform an atomic increment or decrement, or atomic add or subtract,

you don’t receive the arithmetic result. The only atomic result from an arithmetic operation

on memory is the flags. Therefore, the only information you got back from the Interlocked ‐

Increment or Interlocked Decrement functions was the sign of the result. You could try to

read the memory back to see what the result was, but that would be a separate instruction,

outside the scope of the LOCK , and therefore is not part of the overall atomic operation.

The 80386 has no compare-exchange instruction, so there was no Interlocked Compare ‐

Exchange  available for the 80386. You did get a straight Interlocked Exchange , though.

Okay, so that’s atomic operations and memory alignment. Next time, we’ll start looking at

Windows software conventions.

¹ The operations are atomic, but not synchronized.

Raymond Chen

Follow

 

 

https://blogs.msdn.microsoft.com/oldnewthing/20040506-00/?p=39463
http://devblogs.microsoft.com/oldnewthing/20190204-00/?p=101028
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

