
1/7

February 7, 2019

The Intel 80386, part 14: Rescuing a stack trace after the
debugger gave up when it reached an FPO function

devblogs.microsoft.com/oldnewthing/20190206-00

Raymond Chen

So here you go, minding your own business, taking a stack trace, and then the world stops.

ChildEBP RetAddr
0019ec98 5654ef4e combase!CoInitializeEx+0x35
0019ecf8 5654e70b WINSPOOL!GetCurrentNetworkId+0x36
0019ed28 5654e58a WINSPOOL!InternalGetDefaultPrinter+0x8b
0019ed58 75953b77 WINSPOOL!GetDefaultPrinterW+0x5a
0019ed70 7594e6b8 comdlg32!PrintGetDefaultPrinterName+0x17
0019f1b8 7594e520 comdlg32!PrintBuildDevNames+0x60
0019f1d0 75951340 comdlg32!PrintReturnDefault+0x30
0019f628 759a03ab comdlg32!PrintDlgX+0x132
0019fae0 01804a8e comdlg32!PrintDlgA+0x5b
0019fd50 7686196c contoso+0x4a8e

The stack trace just gives up. The function in the Cnotoso DLL was compiled with frame

pointer omission (FPO), which means that the ebp register is being used as a general-purpose

register and does not point to the next frame deeper in the stack. And since we don’t have

symbols for Contoso, the debugger cannot consult the symbol table to get help with

unwinding the stack one more level.

We’ll have to build the stack trace manually. This is basically the same exercise on every

architecture: You look at the code you’re returning to, find its function prologue or epilogue,

and use that information to unwind another frame.

The last known good stack frame was 0019fae0 from Print DlgA . Let’s see what we have

there:

https://devblogs.microsoft.com/oldnewthing/20190206-00/?p=101034

2/7

0:000> dps 0019fae0
0019fae0 0019fd50 ← saved ebp
0019fae4 01804a8e contoso+0x4a8e ← return address
0019fae8 018083b0 contoso+0x83b0 ← argument to PrintDlgA
0019faec 0000000e
0019faf0 01803b8c contoso+0x3b8c
0019faf4 0019fd50
0019faf8 0000000e
0019fafc 0000000e
0019fb00 00200cce
0019fb04 00000112
0019fb08 0000f095
0019fb0c 0078006b

The Print DlgA function takes a single parameter, and it uses the __stdcall calling

convention, so we know that when Print DlgA returns, the stack pointer will be at

0019faec , and we will have returned to the code at 01804a8e . We also see that the ebp

register will have the value 0019fd50 .

To unwind a level, we need to disassemble at 01804a8e and look for the code that cleans up

the stack and returns to the previous function.

contoso+0x4a8e:
01804a8e 833dbc83800100 cmp dword ptr [contoso+0x83bc (018083bc)],0
01804a95 7509 jne contoso+0x4aa0 (01804aa0)
01804a97 b8ffffffff mov eax,0FFFFFFFFh
01804a9c 5e pop esi
01804a9d c3 ret

For the purpose of this exercise, we are just looking for any code path that leads to a ret

instruction. We can assume conditional jumps are taken, or not taken, based on whichever

case will get us to a ret instruction faster. Along the way to the ret , we watch for

instructions that affect the esp register, because we’ll have to simulate them in our head.

In this case, we can pretend that the conditional jump is not taken, and that leads us quickly

to a pop esi and a ret .

So let’s simulate those two operations. Since our simulated esp register is at 0019faec , the

pop esi pops the value 0000000e into esi, and the ret returns to 01803b8c . Since

this was a simple ret with no parameters, there is no extra cleanup, and the stack pointer is

left pointing to 0019faf4 .

0019faec 0000000e ← saved esi
0019faf0 01803b8c contoso+0x3b8c ← return address
0019faf4 0019fd50 ← esp points here after ret
0019faf8 0000000e

Disassemble at the return address to see how to pop out another level.

3/7

contoso+0x3b8c:
01803b8c 8bd8 mov ebx,eax
01803b8e 0bdb or ebx,ebx
01803b90 7510 jne contoso+0x3ba2 (01803ba2)
01803b92 b8fbffffff mov eax,0FFFFFFFBh
01803b97 5d pop ebp ← saved ebp
01803b98 5f pop edi ← saved edi
01803b99 5e pop esi ← saved esi
01803b9a 5b pop ebx ← saved ebx
01803b9b 81c4e8000000 add esp,0E8h ← adjust esp
01803ba1 c3 ret ← return, no extra cleanup

Again, we pretend that the conditional jump is not taken, and that leads us quickly to the

function epilogue. We pop four values off the stack, then add 0e8h to the esp register before

executing the ret . Let’s simulate those operations on our stack.

0019faf4 0019fd50 ← saved ebp
0019faf8 0000000e ← saved edi
0019fafc 0000000e ← saved esi
0019fb00 00200cce ← saved ebx
0019fb04 00000112 ← esp points here after pop ebx

After popping ebx, the code adds 0E8h to esp, so let’s ask the debugger to skip ahead 0xe8

bytes.

0:000> dps 0019fb04+e8
0019fbec 01801325 contoso+0x1325 ← return address
0019fbf0 0000000e ← esp points here after ret

Just keep swimming.

01801325 0bc0 or eax,eax
01801327 0f8d74040000 jge contoso+0x17a1 (018017a1)
0180132d 83f8fd cmp eax,0FFFFFFFDh
01801330 0f846b040000 je contoso+0x17a1 (018017a1)
01801336 83f8fb cmp eax,0FFFFFFFBh
01801339 740d je contoso+0x1348 (01801348)
0180133b 83f8fc cmp eax,0FFFFFFFCh
0180133e 7410 je contoso+0x1350 (01801350)

Okay, we’re not so lucky this time. We don’t see the end of the function right away. The code

does a bunch of stuff with the value returned by this function, but if the return value is

nonnegative, it jumps ahead to 018017a1 . I’m guessing that that jump forward will take us

closer to the end of the function, so let’s continue disassembling there.

018017a1 b801000000 mov eax,1
018017a6 5f pop edi
018017a7 5e pop esi
018017a8 81c404010000 add esp,104h
018017ae c20c00 ret 0Ch

https://www.youtube.com/watch?v=0Hkn-LSh7es

4/7

My hunch paid off. We pop two registers, adjust esp, and then return with 12 bytes of extra

cleanup.

0019fbf0 0000000e ← pop edi
0019fbf4 00000111 ← pop esi
0019fbf8 00000000 ← esp points here after pop esi
0:000> dps 0019fbf8+0x104 ← simulate "add esp, 104h"
0019fcfc 01801fea contoso+0x1fea ← return address
0019fd00 00200cce ← first four bytes of stack arguments
0019fd04 0000000e ← next four bytes of stack arguments
0019fd08 00000000 ← last four bytes of stack arguments
0019fd0c 00000111 ← esp points here after ret 0Ch

Okay, that was a little trickier because the ret 0Ch means that after popping the return

address, we also have to add 0Ch to the esp register, leaving it at 0019fd0c .

On to the next function.

contoso+0x1fea:
01801fea 0bc0 or eax,eax
01801fec 0f85d6010000 jne contoso+0x21c8 (018021c8)
01801ff2 8b44242c mov eax,dword ptr [esp+2Ch]
01801ff6 50 push eax
01801ff7 57 push edi
01801ff8 56 push esi
01801ff9 53 push ebx
01801ffa e831060000 call contoso+0x2630 (01802630)
01801fff 5f pop edi
01802000 5e pop esi
01802001 5b pop ebx
01802002 83c410 add esp,10h
01802005 c21000 ret 10h

This one is a little trickier, for even though the ret is in sight, there’s another function call

in between.

I’m going to assume that the function at 01802630 ends with a ret 10h , matching the 16

bytes of parameters pushed immediately prior to the call . This is generally a safe bet with

the Microsoft C compiler, which prefers to create its entire stack frame at function entry and

leave it alone until the function epilogue.

That means that the epilogue starts with the pop edi , and we can simulate those

instructions as well.

5/7

0019fd0c 00000111 ← saved edi
0019fd10 00000000 ← saved esi
0019fd14 01801b90 contoso+0x1b90 ← saved ebx
0019fd18 00000070 \
0019fd1c ffffffff \ skipped by
0019fd20 ffffffff / add esp, 10h
0019fd24 768617bb USER32!UserCallWinProcCheckWow+0x1fb /
0019fd28 7688311b USER32!_InternalCallWinProc+0x2b ← return address
0019fd2c 00200cce
0019fd30 00000111
0019fd34 0000000e
0019fd38 00000000
0019fd3c 00000000 ← esp points here after return

Hooray, we finally returned to a function we have symbols for! That means we can use the

k= command to resume our stack trace.

The parameters to the k= command are

The value to pretend is in ebp.

The value to pretend is in esp.

The value to pretend is in eip.

We will pretend that we are just about to execute the ret 10h instruction. From our

calculations, therefore, immediately after the ret 10h instruction, the stack pointer is at

0019fd3c , the instruction pointer is at 7688311b , and the ebp register has the value… um,

what’s the value?

Look back through our notes for the most recent simulated pop ebp .

0019faf4 0019fd50 ← saved ebp

Ah, there it is. Okay, let’s go for it.

0:000> k=0019fd50 0019fd28 768617bb
ChildEBP RetAddr
0019fd50 7686196c USER32!_InternalCallWinProc+0x2b
0019fe34 76860abe USER32!UserCallWinProcCheckWow+0x3ac
0019fea8 7687d750 USER32!DispatchMessageWorker+0x20e
0019feb0 018022d1 USER32!DispatchMessageA+0x10
0019ff70 765b60c9 contoso+0x22d1 ← UH-OH
0019ff80 77d43814 KERNEL32!BaseThreadInitThunk+0x19
0019ffdc 77d437e4 ntdll!__RtlUserThreadStart+0x2f
0019ffec 00000000 ntdll!_RtlUserThreadStart+0x1b

Okay, this seems to look good, but there’s that contoso on the stack again. However, this

time, the debugger was able to walk the stack past that function. It could mean that the

function was compiled with frame pointers enabled, in which case we have a valid stack trace.

6/7

Or it could mean that the function was compiled with frame pointers omitted, but the value

in the ebp register happened to point to another frame, which is probably the next ebp-based

frame.

Since debugging is an exercise in optimism, we’ll assume that the stack trace is “good

enough”. It certainly looks reasonable. The ebp chain looks reasonable. The next frame is

only slightly deeper on the stack. And even if there were some FPO functions in there, we can

defer trying to tease them out until our investigation tells us that we need to do so.

So here’s the stack trace we ended up with at the point we decided we had something “good

enough”:

ChildEBP RetAddr
0019ec98 5654ef4e combase!CoInitializeEx+0x35
0019ecf8 5654e70b WINSPOOL!GetCurrentNetworkId+0x36
0019ed28 5654e58a WINSPOOL!InternalGetDefaultPrinter+0x8b
0019ed58 75953b77 WINSPOOL!GetDefaultPrinterW+0x5a
0019ed70 7594e6b8 comdlg32!PrintGetDefaultPrinterName+0x17
0019f1b8 7594e520 comdlg32!PrintBuildDevNames+0x60
0019f1d0 75951340 comdlg32!PrintReturnDefault+0x30
0019f628 759a03ab comdlg32!PrintDlgX+0x132
0019fae0 01804a8e comdlg32!PrintDlgA+0x5b
0019fd50 7686196c contoso+0x4a8e
0019faf0 01803b8c contoso+0x3b8c \ we reconstructed these
0019fbec 01801325 contoso+0x1325 > three stack
0019fcfc 01801fea contoso+0x1fea / frames
0019fd50 7686196c USER32!_InternalCallWinProc+0x2b
0019fe34 76860abe USER32!UserCallWinProcCheckWow+0x3ac
0019fea8 7687d750 USER32!DispatchMessageWorker+0x20e
0019feb0 018022d1 USER32!DispatchMessageA+0x10
0019ff70 765b60c9 contoso+0x22d1 ← UH-OH
0019ff80 77d43814 KERNEL32!BaseThreadInitThunk+0x19
0019ffdc 77d437e4 ntdll!__RtlUserThreadStart+0x2f
0019ffec 00000000 ntdll!_RtlUserThreadStart+0x1b

Now, sure, digging out those three stack frames doesn’t look that useful because we don’t

have any symbols for Contoso at all, but you may be in a case where you do have symbols for

Contoso, but those symbols lack FPO information. In that case, reconstructing stack frames

gives you a proper stack trace as if you had FPO information all along.

And those extra stack frames may be the difference between a “How did we get here?” and a

“Oh, this is how we got here.”

Next time, we’ll look at some compiler code generation idioms.

Raymond Chen

Follow

http://devblogs.microsoft.com/oldnewthing/20190208-00/?p=101036
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

7/7

