
1/8

February 11, 2019

The Intel 80386, part 16: Code walkthrough
devblogs.microsoft.com/oldnewthing/20190210-00

Raymond Chen

Let’s put into practice what we’ve learned so far by walking through a simple function and

studying its disassembly.

#define _lock_str(s)                    _lock(s+_STREAM_LOCKS) 
#define _unlock_str(s)                  _unlock(s+_STREAM_LOCKS) 

extern FILE _iob[]; 

int fclose(FILE *stream) 
{ 
   int result = EOF; 

   if (stream->_flag & _IOSTRG) { 
       stream->_flag = 0; 
   } else { 
       int index = stream - _iob; 
       _lock_str(index); 
       result = _fclose_lk(stream); 
       _unlock_str(index); 
   } 

   return result; 
} 

This is a function from the C runtime library, so the functions use the __cdecl  calling

convention. This means that the parameters are pushed right-to-left, and the caller is

responsible for cleaning them from the stack.

_fclose: 
   push    ebx 
   push    esi 
   push    edi 

This code was compiled back in the days when frame pointer omission was fashionable. The

function does not create a traditional stack frame with the ebp register acting as frame

pointer.

https://devblogs.microsoft.com/oldnewthing/20190210-00/?p=101046


2/8

The 80386 calling convention says that the ebx, esi, the edi, and ebp registers must be

preserved across the call.

   mov     esi,dword ptr [esp+10h] ; esi = stream 

We will be using the stream variable a lot, so we’ll load it into a register for convenient

access.

; int result = EOF; 
   mov     edi,0FFFFFFFFh          ; edi = result = EOF 

The other variable is result, which we will keep in the edi register, and we set it to its initial

value of −1. This is a straight MOV  instruction, which is five-byte encoding (one opcode byte

plus a four-byte immediate). A smaller encoding would have been or edi, -1 , which uses

two bytes for the opcode and one for the 8-bit signed immediate. But the smaller encoding

comes at a perfornance cost because it creates a false dependency on the edi register. (Mind

you, the 80386 did not have out-of-order execution, so dependencies really aren’t a factor

yet.)

; if (stream->_flag & _IOSTRG) { 
   test    byte ptr [esi+0Ch],40h  ; is this a string? 
   je      not_string              ; N: then need a true flush 

Even though _flag is a 32-bit field, we use a byte test to save code size. This takes advantage

of the fact that testing a single bit can be done by testing a single bit in a 32-bit field, or by

testing a single bit in an 8-bit subfield. The _flag field is at offset 0Ch , and the value of

_IOSTRG  is 0x40 , so the bit we want is in the first byte.

We learned some time ago that this size optimization defeats the store-to-load forwarder, but

the 80386 didn’t have a store-to-load forwarder, so that wasn’t really a factor.

; stream->_flag = 0; 
   mov     dword ptr [esi+0Ch],0 

Again, the compiler chooses a full 32-bit immediate instead of using a smaller instruction. An

alternative would have been and dword ptr [esi+0Ch], 0 , using a sign-extended 8-bit

immediate instead of a 32-bit immediate, but at a cost of incurring a read-modify-write

rather than simply a write.

; return result; 
   mov     eax,edi                 ; eax = return value 
   pop     edi 
   pop     esi 
   pop     ebx 
   ret 

https://devblogs.microsoft.com/oldnewthing/


3/8

The compiler chose to inline the common return  instruction into this branch of the if

statement. The value being returned is in the result variable, which we had enregistered in

the edi register. The return value goes in the eax register, so we move it there. And then we

restore the registers we had saved on the stack and return to the caller. Since this function

uses the __cdecl  calling convention, the function does no stack cleanup; it is the caller’s

responsibility to clean the stack.

   nop 

This nop  instruction is padding to bring the next instruction, a jump target, to an address

that is a multiple of 16. The 80386 fetches instructions in 16-byte chunks, and putting jump

targets at the start of a 16-byte chunk means that all of the fetched bytes are potentially

executable.

not_string: 
; int index = stream - _iob; 
   mov     ebx,esi                 ; ebx = stream 
   sub     ebx,77E243F0h           ; ebx = stream - _iob (byte offset) 
   sar     ebx,5                   ; ebx = stream - _iob (element offset) 

This sequence of instructions calculates the value for the index local variable, which the

compiler chose to enregister in the ebx register. We start with the value in the esi register,

which is the stream variable. Next, we subtract the offset of the _iob variable, which is a

global variable, so its address looks like a constant in the code stream. We then take that byte

offset and shift it right by 5, which means dividing by 32, which is the size of a FILE structure

in this particular implementation. The result now sits in the ebx register.

; _lock_str(index) ⇒ _lock(index+_STREAM_LOCKS) 
   add     ebx,19h                 ; add _STREAM_LOCKS 
   push    ebx                     ; the sole parameter 
   call    _lock                   ; call the function 
   add     esp,4                   ; clean stack arguments 

The _lock_str macro is a wrapper around the _lock function. We add STREAM_LOCKS,

which happens to be 25, or 0x19 , and the push it onto the stack as the sole parameter for

the _lock function. Since this is a __cdecl  function, it is the caller’s responsibility to clean

the stack, so we add 4 (the number of bytes of parameters) to the esp register to drop them

from the stack.

; result = _fclose_lk(stream) 
   push    esi                     ; the sole parameter 
   call    _fclose_lk              ; call the function 
   add     esp,4                   ; clean stack arguments 
   mov     edi,eax                 ; save in edi = result 



4/8

Another function call: We push the sole parameter, call the function, and clean the stack. The

return value was placed in the eax register, so we move it into the edi register, which we saw

represents the result variable.

; _unlock_str(index) ⇒_unlock(index+_STREAM_LOCKS) 
   push    ebx                     ; the sole parameter 
   call    _unlock                 ; call the function 
   add     esp,4                   ; clean stack arguments 

The compiler realized it could pull out the common subexpression s+_STREAM_LOCKS and

stored the value of that subexpression in the ebx register. It could therefore push the

precomputed value (helpfully saved in the ebx register) as the parameter for the _lock

function.

; return result; 
   mov     eax,edi                 ; eax = return value 
   pop     edi 
   pop     esi 
   pop     ebx 
   ret 

And this is the same code we saw last time. The return value (result) is moved to the eax

register, which is where the __cdecl  calling convention places it. We then restore the

registers we had saved at entry and return to our caller, leavving our caller to clean the stack

parameters.

The resulting function size is 81 bytes.

Okay, now let’s see how we could optimize this function further. Let’s look closely at the

calculation of index + _STREAM_LOCKS.

   mov     ebx,esi                 ; ebx = stream 
   sub     ebx,77E243F0h           ; ebx = stream - _iob (byte offset) 
   sar     ebx,5                   ; ebx = stream - _iob (element offset) 
   add     ebx,19h                 ; add _STREAM_LOCKS 

The first thing you might think of is combining the first two instructions into a single LEA

instruction:

   lea     ebx,[esi+881dbc10h]     ; ebx = stream - _iob (byte offset) 

The LEA  instruction lets us perform an addition operation in a single instruction by taking

advantage of the effective address computation circuitry in the memory unit. The operation

we want to perform is subtraction of a constant, which we can transform into an addition of

the negative of that constant.

Unfortunately, the trick doesn’t work in this case because the “constant” is a relocatable

address, and there is no loader fixup type for “negative of the address of a variable.”



5/8

But all is not lost. There’s another trick we could use: Fold in the subsequent addition.

ebx = ((esi − 77E243F0h) >> 5) + 19h

= ((esi − 77E243F0h) >> 5) + (320h >> 5)

= (esi − 77E243F0h + 320h) >> 5

= (esi − 77E240D0h) >> 5

Another way to do this calculation:

adjusted_index = stream - _iob + 0x19

= stream - (_iob - 0x19)

= stream - &_iob[-0x19]

Either way, the result is this:

   mov     ebx,esi                 ; ebx = stream 
   sub     ebx,77E240D0h           ; ebx = stream - &_iob[-0x19] (byte offset) 
   sar     ebx,5                   ; ebx = stream - &_iob[-0x19] (element offset) 

Another observation is that stream and result do not have overlapping useful lifetimes. The

useful lifetime of result doesn’t start until it receives the value from _fclose_lk. Prior to that,

its value is known at compile time to be EOF , so there’s no need to devote a register to it.

And we can combine the add esp, 4  with the subsequent push  (which decrements the

esp register) by simply storing the new value into the top-of-stack slot.

The case of a string-based stream does not use the ebx register, so we can use a technique

know as shrink-wrapping, where we start with one stack frame, and then expand it to a

larger one on certain code paths. In this case, we start by saving only the esi register, and

then later save the ebx register only if we realize that we need it.

A simple size/speed optimization (in favor of size) is to use the pop  instruction to pop a

value off the stack (and ignore it). This replaces a three-byte add esp,4  with a one-byte

register pop .

A very aggressive size optimization would be to replace the two-byte instructions mov eax,

r  or mov r, eax  with the one-byte xchg eax, r  instruction. This assumes you need to

move the value into or out of the eax register and you don’t care about the source any more.



6/8

Finally, a string-based stream is quite uncommon (and certainly the case of closing a string-

based stream), so we’ll make that the out-of-line case, and we won’t bother optimizing the

fetch of the jump target for the same reason.

_fclose: 
   push    esi                     ; save register 
   mov     esi,dword ptr [esp+0Ch] ; esi = stream 
   test    byte ptr [esi+0Ch],40h  ; Is this an _IOSTRG? 
   jnz     is_string                   

   push    ebx                     ; shrink-wrap 
   mov     ebx,esi 
   sub     ebx,77E240D0h           ; ebx = stream - &_iob[-0x19] (byte offset) 
   sar     ebx,5                   ; ebx = index + _STREAM_LOCKS 
   push    ebx 
   call    _lock                   ; call the function 

   mov    [esp],esi                ; parameter for _fclose_lk 
   call   _fclose_lk               ; close the stream 

   mov    [esp],ebx                ; parameter for _unlock 
   mov    ebx,eax                  ; ebx = result 
   call   _unlock 

   pop    eax                      ; clean the stack once 
   mov    eax,ebx                  ; eax = result 
   pop    ebx 
   pop    esi 
   ret 

is_string: 
   mov    dword ptr [esi+0Ch],0    ; stream->_flag = 0 
   or     eax,-1                   ; return EOF 
   pop    esi 
   ret 

This reduces the function size to 65 bytes.

Yet another trick is to pre-push the parameters for multiple function calls.



7/8

_fclose: 
   mov     ecx,dword ptr [esp+8]   ; ecx = stream 
   test    byte ptr [ecx+0Ch],40h  ; Is this an _IOSTRG? 
   jnz     is_string               ; Y: handle strings out of line 

   push    ebx                     ; shrink-wrap 
   mov     ebx,ecx 
   sub     ebx,77E240D0h           ; ebx = stream - &_iob[-0x19] (byte offset) 
   sar     ebx,5                   ; ebx = index + _STREAM_LOCKS 
   push    ecx                     ; push for _fclose_lk 
   push    ebx                     ; push for _lock 
   call    _lock                   ; call the function 
   pop     eax                     ; discard arg to _lock 
   call    _fclose_lk              ; close the stream 
   mov     dword ptr [esp],ebx     ; parameter for _unlock 
   mov     ebx,eax                 ; save result 
   call    _unlock 
   pop     eax                     ; discard arg to _unlock 
   mov     eax,ebx                 ; recover result 
   pop     ebx 
   ret 

is_string: 
   mov    dword ptr [ecx+0Ch],0    ; stream->_flag = 0 
   or     eax,-1                   ; return EOF 
   ret 

This brings us down to 57 bytes.

If we abandon the idea of enregistering the result, we can do this:



8/8

_fclose: 
   mov     ecx,dword ptr [esp+8]   ; ecx = stream 
   test    byte ptr [ecx+0Ch],40h  ; Is this an _IOSTRG? 
   jnz     is_string               ; Y: handle strings out of line 

   mov     eax,ecx 
   sub     eax,77E240D0h           ; ebx = stream - &_iob[-0x19] (byte offset) 
   sar     eax,5                   ; ebx = index + _STREAM_LOCKS 
   push    ecx                     ; garbage (for future result) 
   push    eax                     ; push for _unlock 
   push    ecx                     ; push for _fclose_lk 
   push    eax                     ; push for _lock 
   call    _lock                   ; call the function 
   pop     eax                     ; discard arg to _lock 
   call    _fclose_lk              ; close the stream 
   mov     dword ptr [esp+0Ch],eax ; save result 
   pop     eax                     ; discard arg to _lock 
   call    _unlock 
   pop     eax                     ; discard arg to _unlock 
   pop     eax                     ; recover result 
   ret 

is_string: 
   mov    dword ptr [ecx+0Ch],0    ; stream->_flag = 0 
   or     eax,-1                   ; return EOF 
   ret 

But this comes out to 59 bytes.

Next time, a bonus chapter on future developments to this architecture.

Raymond Chen

Follow

 

 

https://devblogs.microsoft.com/oldnewthing/20190212-00/?p=101048
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

