
1/4

February 14, 2019

Accidentally creating a choke point for what was
supposed to hand work off quickly to a background task,
part 2

devblogs.microsoft.com/oldnewthing/20190214-00

Raymond Chen

Last time, we were looking at a function that wanted to kick work off to a background thread

but inadvertently ended up blocking the main threads for about as long as the background

tasks were running.

We had previously diagnosed one problem: The code used a lock around an increment

operation but kept the lock active for too long, causing the creating of the background task to

be serialized inadvertently.

But that by itself should not have caused the main threads to block for about as long as the

background tasks were running. Sure, the queueing of the background tasks is serialized, but

Queue User Work Item is relatively quick because it merely schedules the work to run.

However, the observation was that the code was actually waiting for the tasks to run. What’s

going on?

The culprit for the bigger problem is the code that waits for the task to start running before

releasing the main thread. The purpose of this wait was to ensure that the MTA was not

prematurely torn down. But it had a side effect of making the code that queues task

inadvertently end up waiting for them.

The thread pool is designed to maximize throughput, not to minimize latency. If you throw a

lot of tasks at the thread pool, it will methodically retire them a few at a time, rather than

spinning up a ton of threads and having them all running tasks at the same time, because

having a ton of threads all doing CPU-intensive work causes them all to contend with each

other and gives you a worse total throughput than just creating one thread per processor and

running the tasks one at a time on each thread.

Let’s see what happens when a thread tries to create twenty background tasks on a 4-

processor system. For simplicity, let’s assume that the thread pool has already reached its

ideal state of having four threads.

https://devblogs.microsoft.com/oldnewthing/20190214-00/?p=101052
https://devblogs.microsoft.com/oldnewthing/20190213-00/?p=101050
https://devblogs.microsoft.com/oldnewthing/

2/4

The first task is queued, and it starts running immediately. The task releases the main thread,

so the main thread returns quickly.

The second through fourth tasks also start running immediately, so the main thread resumes

quickly in those cases as well.

The fifth task is different, though. All of the thread pool threads are busy, so the fifth task

doesn’t start right away. It’s waiting for a thread to become available. Eventually, the first

task (say) completes, and the fifth task can now start. Only after the fifth task starts does the

main thread become released.

The process repeats with the subsequent tasks. Instead of queuing quickly and returning, the

main thread sits and waits for its task to to start before it can return. As a result, the main

thread spends most of its time waiting for earlier tasks to complete, which defeats the

purpose of queueing them to the background thread!

Here’s what the code was hoping to accomplish:

Main thread
Thread pool

 thread 1
Thread pool

 thread 2
Thread pool

 thread 3
Thread pool

 thread 4

Queue tasks 1–20 Task 1 Task 2 Task 3 Task 4

Available to
 do other stuff

Task 5

 Task 6

Task 7

Task 8

 Task 9

Task 10

 Task 11

 Task 12

Task 13

Task 14

Task 15

 Task 16

 Task 17

3/4

Task 18

Task 19

Task 20 Idle

 Idle

But since the code in the main thread waits for the task to start, it means that the main

thread doesn’t get to do other stuff right away. It has to wait for the task it requested to start

running on a thread. This means that what you actually get is this:

Main thread
Thread pool

 thread 1
Thread pool

 thread 2
Thread pool

 thread 3
Thread pool

 thread 4

Queue tasks 1–4 Task 1 Task 2 Task 3 Task 4

Queue task 5 Task 5

Queue task 6 Task 6

Queue task 7 Task 7

Queue task 8 Task 8

Queue task 9

 Task 9

Queue task 10 Task 10

Queue task 11 Task 11

Queue task 12 Task 12

Queue task 13 Task 13

Queue task 14 Task 14

Queue task 15 Task 15

Queue task 16 Task 16

Queue task 17 Task 17

Queue task 18 Task 18

Queue task 19 Task 19

Queue task 20 Task 20 Idle

4/4

Available to
 do other stuff

 Idle

The tasks cannot queue instantly. Instead, each attempt to queue a task stalls until the task

starts running somewhere. If the thread pool happens to be very busy at the moment, then

you’ll have to wait a long time. In practice, what happens is that the main thread waits

around until all but the last three tasks have completed.

Okay, now that we understand what the true bottleneck is, we’ll try to address it next time.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/20190215-00/?p=101054
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

