
1/5

March 26, 2019

When do Core Dispatcher.Run Async and Thread -
Pool.Run Async actions complete?

devblogs.microsoft.com/oldnewthing/20190326-00

Raymond Chen

The Core Dispatcher:: Run Async and Thread Pool:: Run Async methods take a

delegate and schedule it to be invoked on the dispatcher thread or on a thread pool thread.

These methods return an IAsync Action , but when does that action complete?

When dealing with asynchronous methods, there are two ways of talking about the result.

First, there’s the return value of the asynchronous method, which at the ABI level is an

IAsync Action or IAsync Operation . Depending on the language projection, this is

exposed to the programmer as a language-specific object.

Projection IAsync Action IAsync Operation<T> Notes

C++/WinRT IAsync Action IAsync Operation<T>

C++/CX IAsync Action^
 task<void>

IAsync Operation<T>^
 task<T>

Projected as IAsyncXxx
 usually wrapped into

 task / Task .
C# IAsync Action

 Task
IAsync Operation<T>

 Task<T>

JavaScript Promise Promise

The second result is the thing that you receive when the asynchronous operation completes.

Projection IAsync Action IAsync Operation<T>

C++/WinRT void T

C++/CX void T

C++/CX + PPL void T

C# void T

https://devblogs.microsoft.com/oldnewthing/20190326-00/?p=102362

2/5

JavaScript undefined T

And there’s also a third thing to worry about, which is when you receive that completion

result.

Let’s answer the three questions for the Core Dispatcher:: Run Async and Thread ‐

Pool:: Run Async methods.

First, they return an IAsync Action . The methods schedule the delegate to be invoked later,

and then return an IAsync Action representing the pending operation.

Second, they complete with void . There is no additional information reported when the

operation completes.

Third (and most interesting) is that they complete when the delegate returns.

Not when the delegate completes.

This means that when you pass a delegate that itself represents an asynchronous operation,

the IAsync Action returned by Run Async completes once your delegate returns its own

async operation. The dispatcher or thread pool doesn’t even see that async operation; it’s

eaten by your language projection. All that the dispatcher or thread pool knows is that it

invoked the delegate, and the delegate returned void , so we must be done.

The C++/WinRT, and JavaScript projections permit your delegate to return someting, even

though the formal function signature returns void . The projection just throws your return

value away, and the caller gets nothing. The C# language lets you make a function formally

return void , even though it secretly continues running asynchronously. The syntax for this

is async void , and I’ve discussed the perils of async void in the past.

This means that if you await the result of a Run Async , the await will complete when your

delegate either returns or performs its own await operation, whichever comes first.

https://docs.microsoft.com/en-us/uwp/api/windows.ui.core.coredispatcher.runasync#await-a-ui-task-sent-from-a-background-thread
https://devblogs.microsoft.com/oldnewthing/20170721-00/?p=96665

3/5

// C++/WinRT

co_await Dispatcher().RunAsync(CoreDispatcherPriority::Normal,
 [lifetime = get_strong()]() -> fire_and_forget
 {
 co_await SomethingAsync();
 co_await SomethingElseAsync();
 Finished();
 });

// C++/CX

create_task(Dispatcher->RunAsync(CoreDispatcherPriority::Normal,
 ref new DispatchedHandler([this]()
 {
 create_task(SomethingAsync()).then([this]() {
 return create_task(SomethingElseAsync());
 }).then([this]() {
 Finished();
 });
 }))).then([this]()
 {
 BackOnMainThread();
 });

// C++/CX + co_await

co_await Dispatcher->RunAsync(CoreDispatcherPriority::Normal,
 ref new DispatchedHandler([this]()
 {
 []() -> task<void>
 {
 co_await SomethingAsync();
 co_await SomethingElseAsync();
 Finished();
 }();
 }));
BackOnMainThread();

// C#

await Dispatcher.RunAsync(CoreDispatcherPriority::Normal, async () =>
 {
 await SomethingAsync();
 await SomethingElseAsync();
 Finished();
 });
BackOnMainThread();

// JavaScript (pretend)¹

4/5

await dispatcher.runAsync(CoreDispatcherPriority.normal, async () =>
 {
 await somethingAsync();
 await somethingElseAsync();
 finished();
 });
backOnMainThread();

When does the await / co_await complete and the Back On Main Thread run?

Answer: When Something Async returns its IAsync Action , that action gets wrapped

inside a coroutine, and execution suspends, returning control to the dispatcher or thread

pool. At this point, the delegate has returned, and the Run Async declares its action to have

completed. The object representing the coroutine (the IAsyncAction , task , Task , or

Promise) is simply discarded.

In C++/WinRT and JavaScript, the discarding is done by the projection. In C++/CX, the

discarding is explicit in the code: Observe that we create a task but do not return it. In C#,

the discarding is done by the language itself because an async lambda can be implicitly

converted to a non-async void lambda (by treating it as if were async void).

Another way of looking at this analysis is that the lambda returns when it encounters its first

await / co_await or return . This in turn causes the Run Async to complete its own

IAsync Action .

If we write things out explicitly, the sequence of operations might be more clear:

// C#
async () =>
{
 await SomethingAsync();
 await SomethingElseAsync();
 Finished();
}

This gets transformed by the compiler into

class Lambda
{
 async void Invoke()
 {
 await SomethingAsync();
 await SomethingElseAsync();
 Finished();
 }
}

which gets further transformed into

5/5

class Lambda
{
 void Invoke()
 {
 Task task1 = SomethingAsync();
 task1.ContinueWith(_ => {
 Task task2 = SomethingElseAsync();
 task2.ContinueWith(_ => {
 Finished();
 });
 });
 }
}

Once Something Async returns its Task , the lambda attaches a continuation to it, so that

it can resume execution when the task completes. At that point, the outer lambda has

finished its work, and the Invoke method returns. This returns control back to the delegate

or thread pool, which declares that the Run Async has completed. And the completion of

Run Async means that Back On Main Thread starts to run.

This behavior is usually not what you want. You want to wait until the lambda has completed,

not just returned. We’ll look at one possible solution next time.

¹ JavaScript is a single-threaded language, so you can’t actually do this, but I included it for

completeness to demonstrate what would happen if it were possible.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

