
1/7

April 26, 2019

How many ways are there to sort GUIDs? How much time
do you have?

devblogs.microsoft.com/oldnewthing/20190426-00

Raymond Chen

Suppose you want to sort GUIDs, say because they are a key in an ordered map. How many

ways are there to order them?

Before we can even talk about how to order GUIDs, we need to figure out how we’re going to

represent them. You can take the view that a GUID is just an array of 16 bytes.¹

00 11 22 33 44 55 66 77 88 99 AA BB CC DD EE FF

But the GUID structure itself groups them into four fields, one of which is an array.

typedef struct _GUID {
 DWORD Data1;
 WORD Data2;
 WORD Data3;
 BYTE Data4[8];
} GUID;

This groups the bytes as follows:

33221100 5544 7766 88 99 AA BB CC DD EE FF

Data1 Data2 Data3 Data4

The bytes in Data1 , Data2 , and Data3 are flipped because Windows is little-endian.

And of course in Windows, it is common to represent GUIDs in their stringified form.

{ 33221100 - 5544 - 7766 - 88 99 - AA BB CC DD EE FF }

 Data1 - Data2 - Data3 - Data4

https://devblogs.microsoft.com/oldnewthing/20190426-00/?p=102450
https://blogs.msdn.microsoft.com/oldnewthing/20160331-00/?p=93231

2/7

Notice that the first three integer-sized groups are flipped, but the fourth one isn’t. I’m

always scared of that fourth group. (I’m not tempted to flip the last group because it’s six

bytes long, which is not the natural size of any integer type on Windows.)

Since the difference between the structured form and the string form is only in the placement

of punctuation marks, and not in the byte ordering, I’ll limit myself to byte-array

representation and string representation.

Okay, now that we know how to represent GUIDs, we can start sorting them.

If you treat the GUID as an array of 16 bytes, then you can sort them with memcmp , which is

a lexicographical sorting by bytes. The comparisons are made as unsigned values.

(Thankfully, it never occurred to anyone to try to sort GUID components as signed

integers!)³ This means that the following list of GUIDs is sorted according to memcmp :

Byte array String

00 FF FF FF FF FF FF FF FF FF FF FF FF FF FF

FF

{FFFFFF00-FFFF-FFFF-FFFF-

FFFFFFFFFFFF}

FF 00 FF FF FF FF FF FF FF FF FF FF FF FF FF

FF

{FFFF00FF-FFFF-FFFF-FFFF-

FFFFFFFFFFFF}

FF FF 00 FF FF FF FF FF FF FF FF FF FF FF FF

FF

{FF00FFFF-FFFF-FFFF-FFFF-

FFFFFFFFFFFF}

FF FF FF 00 FF FF FF FF FF FF FF FF FF FF FF

FF

{00FFFFFF-FFFF-FFFF-FFFF-

FFFFFFFFFFFF}

FF FF FF FF 00 FF FF FF FF FF FF FF FF FF FF

FF

{FFFFFFFF-FF00-FFFF-FFFF-

FFFFFFFFFFFF}

FF FF FF FF FF 00 FF FF FF FF FF FF FF FF FF

FF

{FFFFFFFF-00FF-FFFF-FFFF-

FFFFFFFFFFFF}

FF FF FF FF FF FF 00 FF FF FF FF FF FF FF FF

FF

{FFFFFFFF-FFFF-FF00-FFFF-

FFFFFFFFFFFF}

FF FF FF FF FF FF FF 00 FF FF FF FF FF FF FF

FF

{FFFFFFFF-FFFF-00FF-FFFF-

FFFFFFFFFFFF}

FF FF FF FF FF FF FF FF 00 FF FF FF FF FF FF

FF

{FFFFFFFF-FFFF-FFFF-00FF-

FFFFFFFFFFFF}

FF FF FF FF FF FF FF FF FF 00 FF FF FF FF FF

FF

{FFFFFFFF-FFFF-FFFF-FF00-

FFFFFFFFFFFF}

FF FF FF FF FF FF FF FF FF FF 00 FF FF FF FF

FF

{FFFFFFFF-FFFF-FFFF-FFFF-

00FFFFFFFFFF}

FF FF FF FF FF FF FF FF FF FF FF 00 FF FF FF

FF

{FFFFFFFF-FFFF-FFFF-FFFF-

FF00FFFFFFFF}

3/7

FF FF FF FF FF FF FF FF FF FF FF FF 00 FF FF

FF

{FFFFFFFF-FFFF-FFFF-FFFF-

FFFF00FFFFFF}

FF FF FF FF FF FF FF FF FF FF FF FF FF 00 FF

FF

{FFFFFFFF-FFFF-FFFF-FFFF-

FFFFFF00FFFF}

FF FF FF FF FF FF FF FF FF FF FF FF FF FF 00

FF

{FFFFFFFF-FFFF-FFFF-FFFF-

FFFFFFFF00FF}

FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

00

{FFFFFFFF-FFFF-FFFF-FFFF-

FFFFFFFFFF00}

The .NET Framework System.Guid.CompareTo method compares the structure members

lexicographically, and the bytes of the array are also sorted lexicographically. The sorted

array for System.Guid looks like this:

Byte array String

FF FF FF 00 FF FF FF FF FF FF FF FF FF FF FF

FF

{00FFFFFF-FFFF-FFFF-FFFF-

FFFFFFFFFFFF}

FF FF 00 FF FF FF FF FF FF FF FF FF FF FF FF

FF

{FF00FFFF-FFFF-FFFF-FFFF-

FFFFFFFFFFFF}

FF 00 FF FF FF FF FF FF FF FF FF FF FF FF FF

FF

{FFFF00FF-FFFF-FFFF-FFFF-

FFFFFFFFFFFF}

00 FF FF FF FF FF FF FF FF FF FF FF FF FF FF

FF

{FFFFFF00-FFFF-FFFF-FFFF-

FFFFFFFFFFFF}

FF FF FF FF FF 00 FF FF FF FF FF FF FF FF FF

FF

{FFFFFFFF-00FF-FFFF-FFFF-

FFFFFFFFFFFF}

FF FF FF FF 00 FF FF FF FF FF FF FF FF FF FF

FF

{FFFFFFFF-FF00-FFFF-FFFF-

FFFFFFFFFFFF}

FF FF FF FF FF FF FF 00 FF FF FF FF FF FF FF

FF

{FFFFFFFF-FFFF-00FF-FFFF-

FFFFFFFFFFFF}

FF FF FF FF FF FF 00 FF FF FF FF FF FF FF FF

FF

{FFFFFFFF-FFFF-FF00-FFFF-

FFFFFFFFFFFF}

FF FF FF FF FF FF FF FF 00 FF FF FF FF FF FF

FF

{FFFFFFFF-FFFF-FFFF-00FF-

FFFFFFFFFFFF}

FF FF FF FF FF FF FF FF FF 00 FF FF FF FF FF

FF

{FFFFFFFF-FFFF-FFFF-FF00-

FFFFFFFFFFFF}

FF FF FF FF FF FF FF FF FF FF 00 FF FF FF FF

FF

{FFFFFFFF-FFFF-FFFF-FFFF-

00FFFFFFFFFF}

FF FF FF FF FF FF FF FF FF FF FF 00 FF FF FF

FF

{FFFFFFFF-FFFF-FFFF-FFFF-

FF00FFFFFFFF}

https://docs.microsoft.com/en-us/dotnet/api/system.guid.compareto?view=netframework-4.7.2#System_Guid_CompareTo_System_Guid_

4/7

FF FF FF FF FF FF FF FF FF FF FF FF 00 FF FF

FF

{FFFFFFFF-FFFF-FFFF-FFFF-

FFFF00FFFFFF}

FF FF FF FF FF FF FF FF FF FF FF FF FF 00 FF

FF

{FFFFFFFF-FFFF-FFFF-FFFF-

FFFFFF00FFFF}

FF FF FF FF FF FF FF FF FF FF FF FF FF FF 00

FF

{FFFFFFFF-FFFF-FFFF-FFFF-

FFFFFFFF00FF}

FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

00

{FFFFFFFF-FFFF-FFFF-FFFF-

FFFFFFFFFF00}

Next is string sorting. You will use a case-insensitive sort if you want to preserve your sanity.

A memberwise lexicographical sort of the structure is equivalent to sorting the strings

because, as we noted earlier, the stringification is the same as the structure version, just with

additional punctuation. So the above list is also sorted according to case-insensitive

stringification. Hooray, two sorting algorithms agree on something!

Next up is System. Data. SqlTypes. SqlGuid . Yes, SQL has its own GUID, because it’s

SQL. Not only does it have its own GUID, it has its own GUID sorting algorithm. Because it’s

SQL. And it doesn’t call it a GUID, but rather calls it uniqueidentifier . Again, because

it’s SQL.

SQL sorts GUIDs by breaking the stringified version into groups, sorting groups right to left,

and sorting bytewise within each group. I want to know what they were thinking when they

came up with this.² You end up with this sorted array for

System. Data. SqlTypes. SqlGuid :

Byte array String

FF FF FF FF FF FF FF FF FF FF 00 FF FF FF FF

FF

{FFFFFFFF-FFFF-FFFF-FFFF-

00FFFFFFFFFF}

FF FF FF FF FF FF FF FF FF FF FF 00 FF FF FF

FF

{FFFFFFFF-FFFF-FFFF-FFFF-

FF00FFFFFFFF}

FF FF FF FF FF FF FF FF FF FF FF FF 00 FF FF

FF

{FFFFFFFF-FFFF-FFFF-FFFF-

FFFF00FFFFFF}

FF FF FF FF FF FF FF FF FF FF FF FF FF 00 FF

FF

{FFFFFFFF-FFFF-FFFF-FFFF-

FFFFFF00FFFF}

FF FF FF FF FF FF FF FF FF FF FF FF FF FF 00

FF

{FFFFFFFF-FFFF-FFFF-FFFF-

FFFFFFFF00FF}

FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

00

{FFFFFFFF-FFFF-FFFF-FFFF-

FFFFFFFFFF00}

FF FF FF FF FF FF FF FF 00 FF FF FF FF FF FF

FF

{FFFFFFFF-FFFF-FFFF-00FF-

FFFFFFFFFFFF}

https://web.archive.org/web/20190122185434/https://blogs.msdn.microsoft.com/sqlprogrammability/2006/11/06/how-are-guids-compared-in-sql-server-2005/

5/7

FF FF FF FF FF FF FF FF FF 00 FF FF FF FF FF

FF

{FFFFFFFF-FFFF-FFFF-FF00-

FFFFFFFFFFFF}

FF FF FF FF FF FF 00 FF FF FF FF FF FF FF FF

FF

{FFFFFFFF-FFFF-FF00-FFFF-

FFFFFFFFFFFF}

FF FF FF FF FF FF FF 00 FF FF FF FF FF FF FF

FF

{FFFFFFFF-FFFF-00FF-FFFF-

FFFFFFFFFFFF}

FF FF FF FF 00 FF FF FF FF FF FF FF FF FF FF

FF

{FFFFFFFF-FF00-FFFF-FFFF-

FFFFFFFFFFFF}

FF FF FF FF FF 00 FF FF FF FF FF FF FF FF FF

FF

{FFFFFFFF-00FF-FFFF-FFFF-

FFFFFFFFFFFF}

00 FF FF FF FF FF FF FF FF FF FF FF FF FF FF

FF

{FFFFFF00-FFFF-FFFF-FFFF-

FFFFFFFFFFFF}

FF 00 FF FF FF FF FF FF FF FF FF FF FF FF FF

FF

{FFFF00FF-FFFF-FFFF-FFFF-

FFFFFFFFFFFF}

FF FF 00 FF FF FF FF FF FF FF FF FF FF FF FF

FF

{FF00FFFF-FFFF-FFFF-FFFF-

FFFFFFFFFFFF}

FF FF FF 00 FF FF FF FF FF FF FF FF FF FF FF

FF

{00FFFFFF-FFFF-FFFF-FFFF-

FFFFFFFFFFFF}

The last GUID sorting algorithm I could find is used by the Platform::Guid value class. Its

operator< treats the GUID as if it were four 32-bit unsigned integers, and sorts them

lexicographically. This sort order was designed for performance.

Byte array String

FF FF FF 00 FF FF FF FF FF FF FF FF FF FF FF

FF

{00FFFFFF-FFFF-FFFF-FFFF-

FFFFFFFFFFFF}

FF FF 00 FF FF FF FF FF FF FF FF FF FF FF FF

FF

{FF00FFFF-FFFF-FFFF-FFFF-

FFFFFFFFFFFF}

FF 00 FF FF FF FF FF FF FF FF FF FF FF FF FF

FF

{FFFF00FF-FFFF-FFFF-FFFF-

FFFFFFFFFFFF}

00 FF FF FF FF FF FF FF FF FF FF FF FF FF FF

FF

{FFFFFF00-FFFF-FFFF-FFFF-

FFFFFFFFFFFF}

FF FF FF FF FF FF FF 00 FF FF FF FF FF FF FF

FF

{FFFFFFFF-FFFF-00FF-FFFF-

FFFFFFFFFFFF}

FF FF FF FF FF FF 00 FF FF FF FF FF FF FF FF

FF

{FFFFFFFF-FFFF-FF00-FFFF-

FFFFFFFFFFFF}

FF FF FF FF FF 00 FF FF FF FF FF FF FF FF FF

FF

{FFFFFFFF-00FF-FFFF-FFFF-

FFFFFFFFFFFF}

https://docs.microsoft.com/en-us/cpp/cppcx/platform-guid-value-class?view=vs-2017

6/7

FF FF FF FF 00 FF FF FF FF FF FF FF FF FF FF

FF

{FFFFFFFF-FF00-FFFF-FFFF-

FFFFFFFFFFFF}

FF FF FF FF FF FF FF FF FF FF FF 00 FF FF FF

FF

{FFFFFFFF-FFFF-FFFF-FFFF-

FF00FFFFFFFF}

FF FF FF FF FF FF FF FF FF FF 00 FF FF FF FF

FF

{FFFFFFFF-FFFF-FFFF-FFFF-

00FFFFFFFFFF}

FF FF FF FF FF FF FF FF FF 00 FF FF FF FF FF

FF

{FFFFFFFF-FFFF-FFFF-FF00-

FFFFFFFFFFFF}

FF FF FF FF FF FF FF FF 00 FF FF FF FF FF FF

FF

{FFFFFFFF-FFFF-FFFF-00FF-

FFFFFFFFFFFF}

FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

00

{FFFFFFFF-FFFF-FFFF-FFFF-

FFFFFFFFFF00}

FF FF FF FF FF FF FF FF FF FF FF FF FF FF 00

FF

{FFFFFFFF-FFFF-FFFF-FFFF-

FFFFFFFF00FF}

FF FF FF FF FF FF FF FF FF FF FF FF FF 00 FF

FF

{FFFFFFFF-FFFF-FFFF-FFFF-

FFFFFF00FFFF}

FF FF FF FF FF FF FF FF FF FF FF FF 00 FF FF

FF

{FFFFFFFF-FFFF-FFFF-FFFF-

FFFF00FFFFFF}

Okay, let’s try to summarize all these results. I’m going to number the bytes of the GUID in

the order they are compared, where 00 is the byte compared first (most significant), and FF

is the byte compared last (least significant).

Algorithm Byte array String

memcmp 00 11 22 33 44 55 66 77 88 99 AA

BB CC DD EE FF

{33221100-5544-7766-8899-

AABBCCDDEEFF}

System.Guid 33 22 11 00 55 44 77 66 88 99 AA

BB CC DD EE FF

{00112233-4455-6677-8899-

AABBCCDDEEFF}

string

SqlGuid CC DD EE FF AA BB 88 99 66 77 00

11 22 33 44 55

{FFEEDDCC-BBAA-9988-6677-

001122334455}

Platform::Guid 33 22 11 00 77 66 55 44 BB AA 99

88 FF EE DD CC

{00112233-6677-4455-BBAA-

9988FFEEDDCC}

If you find another GUID sorting algorithm in common use, let me know. Or maybe I’m

better off not knowing.

Bonus chatter: The result of sorting GUIDs is not generally meaningful, but some

algorithms and data structures require keys to be sortable. For example, binary search and

std::map require that the key space be totally-ordered.

7/7

¹ Although that isn’t quite right because GUIDs must be 4-byte aligned, and bytes don’t come

with that restriction.

² Maybe they wanted to group together GUIDs from the same system? In type 1 GUIDs, the

final six bytes identify the machine that generated the GUID.

³ Update: Turns out I was wrong. There exist people who really are that crazy.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/20190913-00/?p=102859
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

