
1/2

May 21, 2019

The secret signal that tells Windows Runtime events that
the event recipient no longer exists

devblogs.microsoft.com/oldnewthing/20190521-00

Raymond Chen

There is a convention in the Windows Runtime that if an event handler returns the error

code RPC_ E_ DISCONNECTED , then that means that the event recipient no longer exists

and can be removed from the list of handlers. The C++/CX name for this error code is

Platform:: Disconnected Exception . C# doesn’t have a specific name for it; it’s just a

special case of COMException .

By convention, the RPC_ E_ DISCONNECTED is returned in the case where you subscribe to

an event with a weak reference to the event recipient, but when the event is raised, the weak

reference fails to resolve to an object, meaning that the object no longer exists. It is a

convention in the Windows Runtime that the event source auto-unregisters the handler when

it learns that the receipient no longer exists. In other words, once you report that the event

recipient is gone, it cannot magically resurrect itself.

In practice, you get this error in two cases. The first is the case where the event recipient

forgot to unregister itself from the event before it destructed. In that case, the handler is

never going to be deregistered (the object forgot to clean up prior to destruction), and

automatically unregistering the handler avoids a leak.

The second is the case where the event recipient unregistered the handler, but an event was

in flight at the time the handler was unregistered, so you hit a race condition where the event

source was all primed to call the handler just as you unregistered it. In that case, the event

handler was already removed, so the auto-unregistration is redundant and harmless.

The WRL event source goes one step further and gives this auto-unregister treatment to the

RPC_ S_ SERVER_ UNAVAILABLE error code as well. And the winrt::event goes two

steps further and also auto-unregisters upon receipt of JSCRIPT_ E_ CANT EXECUTE .

What this means for you is that you should avoid making this secret signal accidentally. If

you return one of these secret error codes (or throw the corresponding exceptions), you are

going to tell the event source that your handler is unrecoverably dead. The most common

https://devblogs.microsoft.com/oldnewthing/20190521-00/?p=102505
https://docs.microsoft.com/en-us/cpp/cppcx/weak-references-and-breaking-cycles-c-cx?view=vs-2017
https://docs.microsoft.com/en-us/dotnet/framework/interop/how-to-map-hresults-and-exceptions?view=netframework-4.7.2
https://docs.microsoft.com/en-us/cpp/windows/wrl/eventsource-class?view=vs-2017
https://docs.microsoft.com/en-us/uwp/cpp-ref-for-winrt/event

2/2

case where you might do it by mistake is if you in turn call out to another object, and that

other object returns one of these error codes or throws one of these exception, and you

propagate the error to the event or allow the exception to escape your event handler.

Next time, we’ll look at how event handlers interact with garbage collection.

Bonus chatter: Many years ago, one of my friends accidentally invoked a secret code. When

she and her friends ordered drinks, she asked for a sidecar, and was perplexed when she

received something that didn’t resemble the cocktail at all. It turns out that in that area, the

term sidecar was a secret code meaning that you’d like an additional shot of alcohol served

with your existing drink. (I assume it was a secret code because strict liquor laws prevented

you from asking for the extra shot explicitly.)

Raymond Chen

Follow

https://en.wikipedia.org/wiki/Sidecar_(cocktail)
http://www.nbcnews.com/id/23491156/ns/business-us_business/t/utah-changes-already-complicated-liquor-laws/
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

