
1/2

June 6, 2019

Why does my C++/WinRT project get errors of the form
“Unresolved external symbol void* __cdecl
winrt_make_YourNamespace_YourClass(void)“?

devblogs.microsoft.com/oldnewthing/20190606-00

Raymond Chen

So your C++/WinRT project gets build failures of the form

unresolved external symbol "void * __cdecl winrt_make_YourNamespace_YourClass(void)"
(?winrt_make_YourNamespace_YourClass@YAPAXXZ) referenced in function
void * __stdcall winrt_get_activation_factory(class std::basic_string_view<wchar_t,
struct std::char_traits<wchar_t> > const &)" (?winrt_get_activation_
factory@@YGPAXABV?$basic_string_view@_WU?$char_traits@_W@std@@@std@@@Z)

What’s going on, and how do you fix it?

The problem is that you used the -opt flag with cppwinrt.exe , but didn’t do the work

necessary to supoprt those optimizations.

To each of your implementation files (such as YourClass.cpp), add the line

#include "YourClass.g.cpp"

If your project defines classes in multiple Windows Runtime namespaces, then the inclusion

should be

#include "Sub/Namespace/YourClass.g.cpp"

If you specified the -prefix option, then the inclusion should be

#include "Sub.Namespace.YourClass.g.cpp"

(Personally, I put the #include directive immediately after the inclusion of the

corresponding YourClass.h header file.)

In a Visual Studio project, you can enable optimizations by setting

<CppWinRTOptimized>true</CppWinRTOptimized>

in your project file.

https://devblogs.microsoft.com/oldnewthing/20190606-00/?p=102546
https://docs.microsoft.com/en-us/windows/uwp/cpp-and-winrt-apis/

2/2

To turn on dotted prefixes, you can set

<CppWinRTUsePrefixes>true</CppWinRTUsePrefixes>

The main optimization enabled by the -opt flag in C++/WinRT 2.0 is bypassing the call to

Ro Get Activatation Factory if the class is implemented in the same module. Instead, the

call goes directly to the implementation. This also removes the need to declare the runtime

class in your manifest if it is used only within the module (say, by XAML binding).

Bonus reading: Meet C++/WinRT 2.0: Optimizing Components.

Raymond Chen

Follow

https://kennykerr.ca/2019/06/07/cppwinrt-optimizing-components/
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

