
1/5

July 9, 2019

Detecting in C++ whether a type is defined, part 2: Giving
it a special name

devblogs.microsoft.com/oldnewthing/20190709-00

Raymond Chen

Warning to those who got here via a search engine: Don’t use this version. Keep

reading to the end of the series.

Last time, we detected whether a type was defined by setting up the unqualified name search

order so that the name search would find the type if it were defined, or a fallback type if not.

One problem with that technique was that the search had to be done from the specially-

constructed namespace.

So let’s fix that, and build on the result.

// awesome.h 
namespace awesome 
{ 
 // might or might not contain 
 struct special { ... }; 
} 

// your code 
namespace detect::impl 
{ 
 struct not_implemented {}; 
 using special = not_implemented; 
} 

namespace awesome::detect 
{ 
 using namespace ::detect::impl; 
 using special_maybe = special; 
} 

This time, I introduce a new type special_ maybe . I did it inside the

awesome ::detect  namespace, so the name special  on the right hand side undergoes

unqualified name lookup, like we described last time, and it will pick either the defined type

::awesome ::special  or the fallback type ::detect ::impl ::special . You can

then use some new helpers:

https://devblogs.microsoft.com/oldnewthing/20190709-00/?p=102671
http://devblogs.microsoft.com/oldnewthing/20190708-00/?p=102664


2/5

namespace detect 
{ 
 template<typename T> 
 constexpr bool is_defined_v = 
   !std::is_same_v<T, impl::not_implemented>; 
} 

void foo() 
{ 
if constexpr (detect::is_defined_v 
               <awesome::detect::special_maybe>) { 
  // do something now that we know "special" exists. 
}
} 

This looks like it would work great, but it doesn’t. Because inside the “do something now that

we know special  exists”, you probably want to use special . But you can’t, because

special  might not exist!

While it’s true that if constexpr  tells the compiler to discard the not-taken branch, the

code in the not-taken branch must still be valid. If special  is not defined, then the body of

the if constexpr  will contain references to the nonexistent entity special , so it will not

compile. You could try using special_maybe , but that’s just a dummy type, and it won’t

have the methods you want to call.

So we have to play a trick: Use the type without saying the type!

template<typename T, typename TLambda> 
void call_me_maybe(TLambda&& lambda) 
{ 
 if constexpr (is_defined_v<T>) { 
   lambda(static_cast<T*>(nullptr)); 
 } 
} 

This helper function doesn’t look all that useful. I mean, if the type exists, then we call the

lambda. That just puts us back where we started, doesn’t it? I mean, the lambda will need to

use the type, which it can’t do if the type doesn’t exist.

Not quite. Because it lets us do this:

https://www.youtube.com/watch?v=fWNaR-rxAic


3/5

void foo(Source const& source) 
{ 
 call_me_maybe<awesome::detect::special_maybe>( 
   [&](auto* p) 
   { 
     using T = std::decay_t<decltype(*p)>; 
     T::static_method(); 
     auto s = source.try_get<T>(); 
     if (s) s->something(); 
   }); 
} 

What’s going on?

The way C++ lambdas work is that a lambda becomes an anonymous type with an

operator()  method. For your typical lambda, the operator()  is a const-qualified

method whose prototype matches that of the lambda:

auto lambda1 = [](int v) -> void { ... }; 

// becomes 

struct anonymous1 
{ 
auto operator()(int v) -> void const { ... }; 
};
auto lambda1 = anonymous1(); 

However, if the parameter list uses auto , then the operator()  itself becomes a template

function:

auto lambda2 = [](auto v) -> void { ... }; 

// becomes 

struct anonymous2 
{ 
template<typename T> 
auto operator()(T v) -> void const { ... }; 
};
auto lambda2 = anonymous2(); 

Next, we take advantage of the fact that in a template function, entities that are dependent

upon the template parameter are not resolved until the template is instantiated. In this case,

the template function is the operator()  of the lambda.

This means that our lambda body can do things that depend on the type of p , and the

compiler can’t validate that those things are meaningful until the template is instantiated,

because it isn’t until that time that the templated operator()  is instantiated and the

compiler knows what type it needs to use.



4/5

In other words, we use the incoming parameter merely for its type information. We extract

the type of the pointed-to object and call it T . Then whenever we would normally say

special , we just say T .¹

And then we realize that we don’t have to call it T . We can call it… special !

void foo(Source const& source) 
{ 
 call_me_maybe<awesome::detect::special_maybe>( 
   [&](auto* p) 
   { 
     using special = std::decay_t<decltype(*p)>; 
     special::static_method(); 
     auto s = source.try_get<special>(); 
     if (s) s->something(); 
   }); 
} 

With this little change, the code inside the lambda looks pretty much like the code you would

have written all along, with the bonus feature that it’s legal code even if special  doesn’t

exist!

We’re getting closer. Next time, we’ll get rid of all this maybe  nonsense.

¹ C++20 makes this a little easier by letting us get the type directly, rather than having to

extract it from the parameter.

void foo(Source const& source) 
{ 
 call_me_maybe<awesome::detect::special_maybe>( 
   [&]<typename T>(T*) 
   { 
     T::static_method(); 
     auto s = source.try_get<T>(); 
     if (s) s->something(); 
   }); 
} 

Or, using the second trick:

void foo(Source const& source) 
{ 
 call_me_maybe<awesome::detect::special_maybe>( 
   [&]<typename special>(special*) 
   { 
     special::static_method(); 
     auto s = source.try_get<special>(); 
     if (s) s->something(); 
   }); 
} 



5/5

Raymond Chen

Follow

 

 

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

