
1/2

August 15, 2019

The SuperH-3, part 9: Constants
devblogs.microsoft.com/oldnewthing/20190815-00

Raymond Chen

Loading constants on the SH-3 is a bit of a pain. We saw that the MOV instruction supports an

8-bit signed immediate, but what if you need to load something outside that range?

The assembler allows you to write this:

 MOV #value, Rn ; load constant into Rn

If the value fits in an 8-bit signed immediate, then it uses that. Otherwise, it chooses a PC-

relative MOV.W or MOV.L depending on the size of the value, and it generates the constant

into the code at a point it believes that the code is unreachable, such as two instructions after

a bra or rts . If no such point can be found, the assembler raises an error. You can use the

.nopool directive to prevent constants from being generated at a particular point, or

.pool to force them to be generated.

If the compiler can generate the constant in two instructions, typically by combining an

immediate with a shift, then the compiler will tend to prefer the two-instruction version

instead of using a constants pool, especially if it can put the second half of the calculation into

an otherwise-wasted branch delay slot. (Yes, we haven’t learned about branch delay slots yet.

Be patient.)

 ; for -256 ≤ value < 256, multiples of 2
 MOV #value / 2, Rn
 SHLL Rn

 ; for -512 ≤ value < 512, multiples of 4
 MOV #value / 4, Rn
 SHLL2 Rn

 ; for -65536 ≤ value < 65536, multiples of 256
 MOV #value / 256, Rn
 SHLL8 Rn

 ; for -16777216 ≤ value < 16777216, multiples of 65536
 MOV #value / 65536, Rn
 SHLL16 Rn

https://devblogs.microsoft.com/oldnewthing/20190815-00/?p=102784
https://devblogs.microsoft.com/oldnewthing/20190806-00/?p=102752

2/2

Other instructions that could be useful for building constants are logical right shift and

rotate. I’m not going to write them out, though. Use your imagination.

Now, it may seem cumbersome to have to use two instructions to generate a constant, but

remember that these instructions are only 16 bits in size, so you can fit two of them in the

space of a single MIPS, PowerPC, or Alpha AXP instruction. And if you can schedule the

instructions properly, the fact that the SH-3 is dual-issue means that each of the instructions

executes in a half-cycle, so the pair of them takes a single cycle, assuming you can schedule

another instruction between them.

Next up are the control transfer instructions, and the return of the confusing branch delay

slot, but the SH-3 adds more wrinkles to make them even more confusing.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/20190816-00/?p=102788
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

