
1/4

August 30, 2019

The sad history of Unicode printf-style format specifiers
in Visual C++

devblogs.microsoft.com/oldnewthing/20190830-00

Raymond Chen

Windows adopted Unicode before most other operating systems.  As a result,

Windows’s solutions to many problems differ from solutions adopted by those who waited

for the dust to settle.¹ The most notable example of this is that Windows used UCS-2 as the

Unicode encoding. This was the encoding recommended by the Unicode Consortium because

Unicode 1.0 supported only 65536 characters.² The Unicode Consortium changed their

minds five years later, but by then it was far too late for Windows, which had already shipped

Win32s, Windows NT 3.1, Windows NT 3.5, Windows NT 3.51, and Windows 95, all of which

used UCS-2.³

But today we’re going to talk about printf -style format strings.

Windows adopted Unicode before the C language did. This meant that Windows had to

invent Unicode support in the C runtime. The result was functions like wcscmp , wcschr ,

and wprintf . As for printf -style format strings, here’s what we ended up with:

The %s  format specifier represents a string in the same width as the format string.

The %S  format specifier represents a string in the opposite width as the format string.

The %hs  format specifier represents a narrow string regardless of the width of the

format string.

The %ws  and %ls  format specifiers represent a wide string regardless of the width of

the format string.

The idea behind this pattern was so that you could write code like this:

TCHAR buffer[256]; 
GetSomeString(buffer, 256); 
_tprintf(TEXT("The string is %s.\n"), buffer); 

If the code is compiled as ANSI, the result is

char buffer[256]; 
GetSomeStringA(buffer, 256); 
printf("The string is %s.\n", buffer); 

[citation needed]

https://devblogs.microsoft.com/oldnewthing/20190830-00/?p=102823


2/4

And if the code is compiled as Unicode, the result is⁴

wchar_t buffer[256]; 
GetSomeStringW(buffer, 256); 
wprintf(L"The string is %s.\n", buffer); 

By following the convention that %s  takes a string in the same width as the format string

itself, this code runs properly when compiled either as ANSI or as Unicode. It also makes

converting existing ANSI code to Unicode much simpler, since you can keep using %s , and

it will morph to do what you need.

When Unicode support formally arrived in C99, the C standard committee chose a different

model for printf  format strings.

The %s  and %hs  format specifiers represent an narrow string.

The %ls  format specifier represents a wide string.

This created a problem. There were six years and untold billions of lines of code in the

Windows ecosystem that used the old model. What should the Visual C and C++ compiler

do?

They chose to stick with the existing nonstandard model, so as not to break every Windows

program on the planet.

If you want your code to work both on runtimes that use the Windows classic printf  rules

as well as those that use C standard printf  rules, you can limit yourself to %hs  for narrow

strings and %ls  for wide strings, and you’ll get consistent results regardless of whether the

format string was passed to sprintf  or wsprintf .

#ifdef UNICODE 
#define TSTRINGWIDTH TEXT("l") 
#else 
#define TSTRINGWIDTH TEXT("h") 
#endif 

TCHAR buffer[256]; 
GetSomeString(buffer, 256); 
_tprintf(TEXT("The string is %") TSTRINGWIDTH TEXT("s\n"), buffer); 

char buffer[256]; 
GetSomeStringA(buffer, 256); 
printf("The string is %hs\n", buffer); 

wchar_t buffer[256]; 
GetSomeStringW(buffer, 256); 
wprintf("The string is %ls\n", buffer); 

Encoding the TSTRINGWIDTH  separately lets you do things like



3/4

_tprintf(TEXT("The string is %10") TSTRINGWIDTH TEXT("s\n"), buffer); 

Since people like tables, here’s a table.

Format Windows classic C standard  

%s printf char* char* ⇐

%s wprintf wchar_t* char*

%S printf wchar_t* N/A

%S wprintf char* N/A

%hs printf char* char* ⇐

%hs wprintf char* char* ⇐

%ls printf wchar_t* wchar_t* ⇐

%ls wprintf wchar_t* wchar_t* ⇐

%ws printf wchar_t* N/A

%ws wprintf wchar_t* N/A

I highlighted the rows where the C standard agrees with the Windows classic format.⁵ If you

want your code to work the same under either format convention, you should stick to those

rows.

¹ You’d think that adopting Unicode early would give Windows the first-mover advantage,

but at least with respect to Unicode, it ended up being a first-mover disadvantage, because

everybody else could sit back and wait for better solutions to emerge (such as UTF-8) before

beginning their Unicode adoption efforts.

² I guess they thought that 65536 characters should be enough for anyone.

³ This was later upgraded to UTF-16. Fortunately, UTF-16 is backward compatible with UCS-

2 for the code points that are representable in both.

⁴ Technically, the Unicode version was

unsigned short buffer[256]; 
GetSomeStringW(buffer, 256); 
wprintf(L"The string is %s.\n", buffer); 

https://groups.google.com/forum/#!msg/alt.folklore.computers/mpjS-h4jpD8/9DW_VQVLzpkJ


4/4

because there was not yet a wchar_t  as an independent type. Prior to the introduction of

wchar_t  to the standard, the wchar_t  type was just a synonym for unsigned short .

The changing fate of the wchar_t  type has its own story.

⁵ The Windows classic format came first, so the question is whether the C standard chose to

align with the Windows classic format, rather than vice versa.

Raymond Chen

Follow

 

 

https://devblogs.microsoft.com/oldnewthing/20161201-00/?p=94836
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

