
1/5

September 4, 2019

The COM_INTERFACE_ENTRY must be a COM interface,
but nobody actually checks

devblogs.microsoft.com/oldnewthing/20190904-00

Raymond Chen

A customer had some code written with the Active Template Library, more commonly known

as ATL. Apparently, ATL is still a thing!

Anyway, their problem was that their component that had been working just fine for many

years started crashing. Their object went something like this:

[uuid("...")]
class ATL_NO_VTABLE CAwesomeWidget :
 public CComObjectRootEx<CComMultiThreadModel>,
 public CComCoClass<CAwesomeWidget, &CLSID_AwesomeWidget>,
 public IWidgetProviderInfo,
 public IWidget
 /// ... other interfaces ...
{
 ...

 BEGIN_COM_MAP(CAwesomeWidget)
 COM_INTERFACE_ENTRY(IWidgetProviderInfo)
 COM_INTERFACE_ENTRY(IWidget)
 // ... other interfaces ...
 END_COM_MAP()

 // IWidgetProviderInfo
 IFACEMETHODIMP GetProviderId(GUID *pguidId);

 // IWidget
 IFACEMETHODIMP Frob();
 ...
};

Yes, I’m making you look at ancient ATL code, with all its wacky macros. Product

maintenance is like that. Deal with it.

Clients can do

https://devblogs.microsoft.com/oldnewthing/20190904-00/?p=102837
https://docs.microsoft.com/en-us/cpp/atl/active-template-library-atl-concepts
https://blogs.msdn.microsoft.com/oldnewthing/20160329-00/?p=93214

2/5

void Sample()
{
 CComPtr<IWidget> widget;
 widget.CoCreateInstance(CLSID_AwesomeWidget);
 widget->Frob();
}

to create the CAwesome Widget as a widget, and then ask the widget to do something.

The CAwesome Widget did its job very well for over five years, and then suddenly it started

crashing in Get Provider Id , even though nobody called Get Provider Id .

They traced it back to this call:

void Sample2()
{
 CComPtr<IUnknown> unk;
 unk.CoCreateInstance(CLSID_AwesomeWidget);

 CComQIPtr<IWidget> widget(unk); // ← here
 widget->Frob();
}

Obviously, this wasn’t literally what their code did, but it boils the problem down to its

essence.

The idea was that instead of creating the object for its IWidget interface, the object was

created with the generic IUnknown interface, and then it was converted to an IWidget .

The reason for this extra step isn’t important, but you can come up with scenarios where this

might happen. (For example, maybe the Co Create Instance is coming from a generic

“creation helper” function.)

The problem was in the definition of the IWidget Provider Info :

// widget.h
[uuid("...")]
interface IWidgetProviderInfo
{
 STDMETHOD(GetProviderId)(GUID *pguidId) PURE;
};

Do you see something?

Actually, more honestly, I should be asking, “Do you not see something?”

The IWidget Provider Info interface does not derive from IUnknown !

Once you realize this, everything unravels.

3/5

The COM_ INTERFACE_ ENTRY macro assumes that the thing it’s given is indeed a COM

interface. This assumption is made in two places:

1. A request for IUnknown returns the first interface in the list.

2. Any successful request will be accompanied by a call to IUnknown:: Add Ref , per

COM rules.

They listed IWidget Provider Info as the first “interface”, so it was returned as in response

to a request for IUnknown , even though it wasn’t IUnknown .

The attempt to convert the IUnknown to an IWidget involves a call to

IUnknown:: Query Interface , but remember, that thing which the code thinks is an

IUnknown is really an IWidget Provider Info . The call to IUnknown:: Query ‐

Interface actually called IWidget Provider Info:: Get ProviderId . With the wrong

number and types of arguments, of course. The crash occurred when the Get Provider Id

method tried to write to what it thought was a pguidId , but which was actually a riid

from the Query Interface .

The customer would have noticed that something was wrong with IWidget Provider Info

had they ever tried to use it!

CComPtr<IWidgetProviderInfo> info;
// ^^ error: class "IWidgetProviderInfo" has no "Release" member

Merely talking about IWidget Provider Info causes the compiler to get upset because the

CComPtr destructor needs to call the Release method, which doesn’t exist. The customer

never noticed this because they never used the IWidget Provider Info interface at all! It

was presumably added in anticipation of a feature that never materialized.

Okay, so now we understand why this crashes and how it eluded compile-time detection, but

how did it ever work? After all, the implementation of Create Instance needs to do a

Query Interface to return the proper pointer back to the caller.

Here’s a simplified version of how ATL implements Create Instance :

4/5

template <class T1>
class CComCreator
{
 static HRESULT WINAPI CreateInstance(void* pv, REFIID riid, LPVOID* ppv)
 {
 HRESULT hRes = E_OUTOFMEMORY;
 T1* p = NULL;
 ATLTRY(p = new T1(pv))
 if (p != NULL)
 {
 p->SetVoid(pv);
 p->InternalFinalConstructAddRef();
 hRes = p->_AtlInitialConstruct();
 if (SUCCEEDED(hRes))
 hRes = p->FinalConstruct();
 p->InternalFinalConstructRelease();
 if (hRes == S_OK)
 hRes = p->QueryInterface(riid, ppv);
 if (hRes != S_OK)
 delete p;
 }
 return hRes;
 }
}

Why doesn’t the call to p->Query Interface crash?

Because it’s being called from a pointer to a T1 , not from a pointer to an IUnknown . The

compiler therefore knows that the Query Interface method is in fact not at slot 0 in vtable

0, but rather is at slot 0 in vtable 1 (taking it from IWidget).

So how about fixing the problem?

One fix is to delete the unused IWidget Provider Info interface. However, when working

with legacy code, you may be averse to taking such a drastic step, because there might be

somebody who is actually using that interface in a way you failed to detect. Or maybe you

want to keep the interface around because you really do plan on using it soon. In that case,

you can make the interface derive from IUnknown , like it should have in the first place:

[uuid("...")]
interface IWidgetProviderInfo : IUnknown
{
 STDMETHOD(GetProviderId)(GUID *pguidId) PURE;
};

Customer problem solved.

Next time, we’ll look at how to catch this problem at compile time.

Raymond Chen

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

5/5

Follow

