
1/2

September 5, 2019

Making the COM_INTERFACE_ENTRY macro better at
detecting misuse

devblogs.microsoft.com/oldnewthing/20190905-00

Raymond Chen

Last time, we studied a crash involving improper use of the COM_ INTERFACE_ ENTRY

macro. Can we make it better at detecting misuse at compile time?

We want to make sure that IWidget Provider Info derives directly from IUnknown , so

that, given the declaration

IWidgetProviderInfo* p;

we can guarantee that IWidget Provider Info is convertible to IUnknown and that

reinterpret_cast<IUnknown*>(p) == static_cast<IUnknown*>(p)

Otherwise, somebody could try this:

struct Strange { ... };
interface IWidgetProvider : Strange, IUnknown
{
 ...
};

The IWidget Provider can be converted to a IUnknown , but it will probably also need to

be adjusted by sizeof(Strange) .¹

ATL already has a macro for calculating the amount by which the two parts of the above

comparison differ. It uses it for deciding how much to adjust the pointer to get to the desired

interface:

#define offsetofclass(base, derived) \
 ((DWORD_PTR)(static_cast<base*>((derived*)_ATL_PACKING)) \
 -_ATL_PACKING)

So we just need to assert that the value is (1) calculable, and (2) zero.

The original definition of COM_ INTERFACE_ ENTRY is

https://devblogs.microsoft.com/oldnewthing/20190905-00/?p=102840
https://devblogs.microsoft.com/oldnewthing/20190904-00/?p=102837

2/2

#define COM_INTERFACE_ENTRY(x)\
 {&IID_##x, \
 offsetofclass(x, _ComMapClass), \
 _ATL_SIMPLEMAPENTRY},

We can make this minor adjustment to ensure that converting from x to IUnknown is both

possible and a nop:

#define COM_INTERFACE_ENTRY(x)\
 {&IID_##x, \
 offsetofclass(x, _ComMapClass)/!offsetofclass(IUnknown, x), \
 _ATL_SIMPLEMAPENTRY},

If x cannot be converted to IUnknown , then the offsetofclass will encounter a

compile-time error because the static_cast from x* to IUnknown* is not possible.

If the conversion is possible but requires a pointer adjustment, then the offsetof will

produce a nonzero value. Negating it with ! will produce 0 , and dividing by it will trigger

a divide-by-zero compile-time error.

If the conversion is possible and does not require a pointer adjustment (which is the case we

want to permit), then the offsetof will result in the value 0 . Negating it with ! will

produce 1 , and dividing by 1 has no effect.

You can apply this same fix to the other COM_ INTERFACE_ ENTRY macros, and to any

other macro that assumes that its type parameter is derived from IUnknown .

¹ Types that are not standard layout are not required to place the first named base class at

offset zero relative to the derived class, so this is something worth checking even if you think

everything is set up correctly.

Raymond Chen

Follow

https://en.cppreference.com/w/cpp/language/data_members#Standard_layout
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

