
1/4

September 18, 2019

How to split out pieces of a file while preserving git line
history: The easy way with misleading commits

devblogs.microsoft.com/oldnewthing/20190918-00

Raymond Chen

Last time, we split pieces of a file into separate files while preserving line history. We had to

do some git commit-tree magic to get the results we wanted. But there’s a way to do this

with an octopus merge. You just have to make sure to keep the octopus happy.

Again, let’s use the same scratch repo as we did for the last few days. You can follow the same

copy/paste script, or you can take your existing scratch repo and git reset --hard

ready to get it back into its “ready to start experimenting” state.

To do things the easy way, we create a branch for each file we want to split out.

git checkout -b 2f

git mv foods fruits
git commit --author="Greg <greg>" -m "create fruits from foods"

As before, we start by renaming foods to fruits . This ensures that when git traces the

history of the fruits file, it will follow the history back into the foods file.

Next, we edit the fruits file so that it contains the lines we want to split out from foods

(so far so good), but we also regenerate the foods file with only its final contents. We

intend to delete the vegetables from the foods file, so we’ll delete both the fruits and the

vegetables. and the rest go back into the foods file.

>foods echo cheese
>>foods echo eggs
>>foods echo milk
git add foods

>fruits echo apple
>>fruits echo grape
>>fruits echo orange

git commit --author="Greg <greg>" -am "split fruits from foods"

git checkout -

https://devblogs.microsoft.com/oldnewthing/20190918-00/?p=102901
https://devblogs.microsoft.com/oldnewthing/20190917-00/?p=102894

2/4

This is completely misleading and looks like we’ve lost our minds. We are ostensibly splitting

the fruits out from the foods, but we also threw away the veggies. Somebody looking at this

commit in isolation will say, “Hey, what happened to all the veggies?”

But let’s keep going. Repeat the exercise by splitting out the veggies and throwing away the

fruit.

git checkout -b 2v

git mv foods veggies
git commit --author="Greg <greg>" -m "create veggies from foods"

git checkout 2f foods

>veggies echo celery
>>veggies echo lettuce
>>veggies echo peas

git commit --author="Greg <greg>" -am "split veggies from foods"

git checkout -

To save ourselves some typing, we used a git checkout 2f foods to say “Just give me the

copy of foods from the 2f branch.”

Finally, on the main branch, we also edit the foods file into its final form.

git checkout 2f foods
git commit --author="Greg <greg>" -am "split fruits and veggies from foods"

This commit is also absurdly misleading because most of the contents of the foods file

simply vanished!

git merge 2f 2v

Trying simple merge with 2f
Trying simple merge with 2v
Merge made by the 'octopus' strategy.
fruits | 3 +++
veggies | 3 +++
2 files changed, 6 insertions(+)
create mode 100644 fruits
create mode 100644 veggies

The result is now that all three files are at their desired final forms, with the desired final line

attributions.

3/4

git blame fruits

^e7a114d foods (Alice 2019-09-16 07:00:00 -0700 1) apple
86348be4 foods (Bob 2019-09-16 07:00:01 -0700 2) grape
34eb5bd1 foods (Carol 2019-09-16 07:00:02 -0700 3) orange

git blame veggies

^e7a114d foods (Alice 2019-09-16 07:00:00 -0700 1) celery
86348be4 foods (Bob 2019-09-16 07:00:01 -0700 2) lettuce
34eb5bd1 foods (Carol 2019-09-16 07:00:02 -0700 3) peas

git blame foods

^e7a114d (Alice 2019-09-16 07:00:00 -0700 1) cheese
86348be4 (Bob 2019-09-16 07:00:01 -0700 2) eggs
34eb5bd1 (Carol 2019-09-16 07:00:02 -0700 3) milk

However, the way we got there is very strange, and includes quite a few extremely misleading

commits. I don’t really recommend it. I recommend doing it the hard way with git commit-

tree . Yes, it’s harder, but it’s also much less misleading to people who come to the repo

later.

Bonus chatter: The misleading commit on the main branch is necessary because of another

bug in octopus merges: It silently ignores the --no-ff flag. You can see this if you skip the

extra commit on the main branch and try an octopus merge right away:

git merge --no-ff 2f 2v

Fast-forwarding to: 2f
Trying simple merge with 2v
Merge made by the 'octopus' strategy.
foods | 6 ------
fruits | 3 +++
veggies | 3 +++
3 files changed, 6 insertions(+), 6 deletions(-)
create mode 100644 fruits
create mode 100644 veggies

Even though we said --no-ff , the octopus merge fast-forwarded anyway. The result is that

the foods file failed to preserve line history.

git blame foods

61bca29b (Greg 2019-09-18 07:00:00 -0700 1) cheese
61bca29b (Greg 2019-09-18 07:00:00 -0700 2) eggs
61bca29b (Greg 2019-09-18 07:00:00 -0700 3) milk

All the lines got blamed on Greg, when they really should be blamed on Alice, Bob, and Carol.

Raymond Chen

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

4/4

Follow

