
1/3

November 21, 2019

Why does the Alpha AXP predict a coroutine transfer the
way it does?

devblogs.microsoft.com/oldnewthing/20191121-00

Raymond Chen

I noted some time ago that the Alpha AXP has a dedicated branch to coroutine instruction.

The behavior of this instruction is to branch to the address held in the specified register, but

the interesting part is how the instruction is predicted: The processor predicts a branch to the

address at the top of the return address predictor stack, and the value at the top of the return

address predictor stack is replaced by the address of the instruction that follows the

JSR_CO .

Why does the processor use this algorithm? Why doesn’t it just push the address of the

following instruction onto the return address predictor stack?

Let’s illustrate with an example. Note that the entire issue of JSR_CO applies only to stackful

coroutines. Stackless coroutines use normal JSR subroutine calls.

Consider two coroutines that call each other. On entry to the first coroutine, the return

address predictor stack contains the return address predictions for the code that will run

once the first coroutine returns.

… X2 X1

The first coroutine does some stuff and then calls the second coroutine. The processor

incorrectly predicts a transfer to X1 . This initial misprediction is unavoidable because there

was no opportunity to put it on the predictor stack in the first place. The processor then puts

the first coroutine’s resumption address onto the top of the predictor stack, replacing X1 .

… X2 C1

The second coroutine runs for a while, and then transfers control back to the first coroutine.

This time, the processor correctly predicts a transfer to C1 . It then puts the second

coroutine’s resumption address onto the return address predictor stack, replacing C1 .

… X2 C2

https://devblogs.microsoft.com/oldnewthing/20191121-00/?p=103121
https://devblogs.microsoft.com/oldnewthing/20170811-00/?p=96805

2/3

The first coroutine does some stuff, say it calls a helper function that returns. The call is a

normal JSR , so it pushes C1b onto the return address predictor stack, and the helper

function returns with a normal RET , which pops the correctly-predicted address off the

stack. In general, normal non-coroutine calls are predicted in the usual way, and when

control is in the first coroutine, the pushes and pops on the predictor stack cancel out, and

the return address predictor stack still looks like this:

… X2 C2

The first coroutine now calls back into the second coroutine, which resumes where it left off,

namely at C2 , which also matches the predicted return address. The resumption location in

the first coroutine replaces C2 , leaving

… X2 C1c

And so on. Control transfers back and forth between the two coroutines, and their

resumption locations take turns at the top of the predictor stack. Let’s say that the second

coroutine is now finished, so it transfers control to the first coroutine for the last time.

… X2 C2z

Here, C2z is a resumption address for the second coroutine, but it will never be used since

the coroutine is finished. (The processor doesn’t know that, so it puts it onto the return

address predictor stack anyway.)

The first coroutine now returns to its caller, which was X1 , but that return address was lost

to the predictor stack ages ago. The return is mispredicted.

… X2

But the bad state lasts for only one frame. When the caller returns to its own caller, the

return address X2 will be right there at the top of the return address predictor stack, and

things are back to normal.

Now, since these are stackful coroutines, there’s no requirement that the transfer back to the

first coroutine happen at the top level of the second coroutine. In the case where the second

coroutine transferred back to the first coroutine from a subroutine, the return address

predictor will not only mispredict the transfer back to the first coroutine, but it’ll also have

the other return addresses, too, corresponding to activation frames still active in the second

coroutine.

… X2 C2c C3 C4

3/3

This prediction stack will pay off if the first coroutine transfers back to the second coroutine,

since it will resume with a stack whose C2 through C4 entries exactly match the activation

frames.

In general, the algorithm for managing the return address predictor stack works well if a

coroutine transfers out of its stack at the same frame that it transferred in. If it transfers out

in a nested call, then the predictor won’t work, but there wasn’t much you could have done

about them anyway.

You’re also out of luck if control cycles among three or more coroutines. Again, there wasn’t

much you could have done about this either.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

