
1/3

December 4, 2019

Not actually crossing the airtight hatchway: Harmless
out-of-bounds read that is never disclosed

devblogs.microsoft.com/oldnewthing/20191204-00

Raymond Chen

A security vulnerability report arrived that went something like this:

By passing a specifically malformed payload, an attacker can trigger an out-of-bounds read. By
this means, a remote attacker can cause the disclosure of sensitive information. An attacker can
combine this with other vulnerabilities to achieve remote code execution.

The finder also included some reverse-compiled output¹ highlighting the point at which the

out-of-bounds read occurred.

Anyway, it appears that the out-of-bounds read was discovered by using a memory debugging

tool that does strict validations of every memory access. But consumers in the wild don’t run

programs in such an environment.

When run on an actual consumer machine, the program uses the standard operating system

heap manager, and the standard operating system heap manager does things like pad

allocations to maintain alignment. Those extra bytes are technically off-limits, but they will

always be there.

In this case, what happens is that the code allocates a block of memory, then reads past the

end of it by a tiny amount, well within the heap padding, so it’s reading uninitialized heap

memory. No denial of service is possible here because the heap padding saves you.

The next thing the code does is validate that the buffer is valid. This validation fails because

the memory block is too small, and the operation fails. The value read from the uninitialized

heap memory is not returned, so it is never disclosed to anybody.

Here’s a sketch. Assume that the checked_* functions reject the request if the operation

fails.

https://devblogs.microsoft.com/oldnewthing/20191204-00/?p=103178

2/3

struct ITEMSLIST
{
 uint32_t itemCount;
 ITEM items[ANYSIZE_ARRAY];
};

auto list = (ITEMSLIST*)checked_malloc(byteCount);
checked_read(list, byteCount);

auto requiredSize =
 checked_add(offsetof(ITEMSLIST, items) +
 checked_mult(sizeof(ITEM), header->itemCount));
checked_require(byteCount >= requiredSize);

... do stuff with the items ...

If the byteCount is less than sizeof(uint32_t) , then the code under-allocates the

list and tries to read the itemCount from it. Oh no, we are at risk of disclosing heap

memory!

But then the code checks that the header size is large enough to hold the specified number of

items, and seeing as the header size is not even large enough to hold the header, it certainly

isn’t large enough to hold any items. So the request is rejected.

Note that the invalid itemCount never leaves the function. The value of itemCount is

heap garbage, but whatever value it has will always fail the byteCount >= requiredSize

test (assuming it manages to pass the checked_ mult test), so the call will always be

rejected. And the rogue value of itemCount is not exposed, so whatever garbage value

happened to be there never escapes. What happens in parameter validation stays in

parameter validation.

The finder jumped the gun: They found an out-of-bounds read but didn’t study it to see

whether it was exploitable. They immediately concluded that there was information

disclosure, and then tacked on a remote code execution for good measure.

What they found is a defect, but it has no security implications. It’s just a bug.

When informed that the issue as not exploitable and therefore has no security implications,

they went ahead and issued a security bulletin anyway.

Six months later, the same organization found the same issue in a different component. We

again told them that it was not exploitable and therefore has no security implications. The

second time, they withdrew their plans to issue a bulletin.

So I’m not sure what changed over there, but at least they stopped issuing bogus bulletins for

this category of issue.

https://devblogs.microsoft.com/oldnewthing/20040826-00/?p=38043
https://theweek.com/articles/459434/brief-history-what-happens-vegas-stays-vegas

3/3

Bonus chatter: This category of false alarm is quite common. People use various analysis

tools to identify issues and immediately file a report without evaluating whether the issue

actually is a vulnerability. They subscribe to the shotgun approach: File tons of potential

issues, and let Microsoft figure out which ones are valid. Why do the extra work if you can

externalize it!

¹ The reverse-compiled output has meaningless variable names like v1 , v2 and v3 , and

object member accesses are expressed in the form (int*)((BYTE*)v40 + 0x20) .

A note to people who send reverse-compiled output: Please include the original assembly

language, and annotate that. Otherwise, we have to take your reverse-compiled output and

try to re-compile it to assembly language in a way that matches the actual binary, and then

re-reverse-compile it back to the original source code. These steps can be quite complicated

because of compiler optimizations. (Also because people often fail to provide enough build

number information to let us identify exactly which binary you are reverse-compiling, forcing

us to keep trying all the different patched versions of the binary until we find a match or

become exhausted.)

If you’re using IDA Pro’s Hex-Rays decompiler, you can right-click and say “Copy comments

to disassembly.” That will take your comments in the reverse-compiled code and apply them

to the corresponding lines of assembly.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

