
1/4

December 9, 2019

C++ coroutines: Getting started with awaitable objects
devblogs.microsoft.com/oldnewthing/20191209-00

Raymond Chen

Coroutines were added to C++20, and Lewis Baker has a nice introduction to them.

But I’m going to write another one, taking a more practical approach: The least you need to

know to accomplish various coroutine tasks.

We’ll start by looking at awaitable objects: Things that can be passed to co_await .

When you do a co_await x , the compiler tries to come up with a thing called an awaiter.

1. (We’re not ready to talk about step 1 yet.)

2. (We’re not ready to talk about step 2 yet.)

3. Otherwise, x is its own awaiter.

Now that we have an awaiter, we can use it to wait for x to complete. I’ll start with the basic

idea, and then gradually make it more complicated.

The basic idea is that the compiler generates code like this:

 calculate x
obtain awaiter

co_await (We’re not ready to talk about this step yet.)
save state for resumption
awaiter.await_suspend(handle);

(We’re not ready to talk about this step yet.)
return to caller

[Invoking the handle resumes execution here]
restore state after resumption
result = awaiter.await_resume();

 execution continues

The main job of the await_suspend method is to arrange somehow for the handle to be

invoked when it’s time for the co_await to be considered to have completed execution.

https://devblogs.microsoft.com/oldnewthing/20191209-00/?p=103195
http://lewissbaker.github.io/

2/4

The main job of the await_resume method is to report the result of the co_await

operation. If the await_resume method returns void , then the co_await also returns

void .

You can invoke the handle at any time once the await_suspend starts. It’s even possible

(for example, due to race conditions) that the somehow caused the handle to be invoked

even before the await_suspend finishes running. The entire function could even have run

to completion!

Thread 1 Thread 2

calculate x
obtain awaiter

save state for resumption
awaiter.await_suspend
{

schedule handler to execute

 handler is invoked
restore state after resumption
result = awaiter.await_resume();

execution continues

does final work
}

return to caller

One of the things that will happen when execution continues is that the awaiter destructs

according to the normal rules. In particular, if the awaiter was a temporary (and it almost

always is), then it destructs according to the rules for destruction of temporaries.

Observe that the handler was invoked before await_ suspend could finish running. Any

attempt to use members of the temporary awaiter will use an object after it has been

destructed.

Therefore, it is important that your awaiter not use its this pointer once it has arranged for

the handle to be invoked somehow, because the this pointer may no longer be valid.

The C++ language coroutine library comes with a predefined awaiter known as

suspend_ always . Its await_suspend throws away the handle without doing anything,

which means that the continuation will never run. In other words, suspend_ always

suspends and never wakes up. Like a dark version of the Snow White fairy tale.

3/4

Now, you may think that suspend_ always is not particularly useful, seeing as it basically

hangs the coroutine. But it’s a convenient starting point to build on, because it fills out all the

necessary paperwork for being an awaiter. All you have to do is provide a better

await_ suspend method.

Even with this extremely rudimentary understanding of coroutines, we can already write

something interesting.

struct resume_new_thread : std::experimental::suspend_always
{
 void await_suspend(
 std::experimental::coroutine_handle<> handle)
 {
 std::thread([handle]{ handle(); }).detach();
 }
};

Since is this our first time, let’s walk through the steps one at a time.

When you do a

co_await resume_new_thread();

we start by default-constructing a resume_ new_ thread object.

The compiler then sees that you are co_await ing it, so it saves the coroutine state, and then

step 3 above treats the object as its own awaiter, so the compiler calls the await _suspend

method.

Our custom awaiter suspends the coroutine by creating a thread, detaching it (so it continues

to run after the thread object destructs), and returns.

The thread runs the lambda. The lambda invokes the coroutine handle, which resumes the

coroutine.¹

Upon resumption, the compiler calls the await_ resume method to get the result. The

built-in suspend_ always has an await_ resume method that returns nothing, and

since we didn’t override it, our custom awaiter also returns nothing. In other words, the

result of the co_await is void .

And finally, we have reached the end of the full expression, so the temporary

resume_ new_ thread object destructs.

The result of this exercise is that if you do a

co_await resume_new_thread();

your coroutine resumes in a new thread. It’s magic!²

4/4

winrt::fire_and_forget StartWidget(
 std::shared_ptr<Widget> widget,
 WidgetStartOptions options)
{
 auto ticket = widget->GetStartTicket(options);
 co_await resume_new_thread();
 widget->PlugIn();
 widget->SwitchOn();
 // ticket destructor runs here
}

In this example, we have a coroutine that does some up-front validation by trying to obtain a

start ticket. And then it moves to a new thread for actually performing the widget operations

to get the thing started. At the close-brace, the ticket destructs, which releases the widget to

be manipulated by others. Also at the close-brace, the function parameters are destructed. In

this case, it means that the shared_ ptr and options destruct.

Note that the destruction of the ticket , shared_ptr , and options all occur on the new

thread, not on the original thread.

These simple one-shot awaitables are typically either simple objects or functions that return

simple objects. In this case, it was a simple object. Next time, we’ll look at the function

pattern and compare the two patterns.

Bonus chatter: C++ coroutines are single-use. Once you invoke the handle, it is dead and

may not be invoked again.

¹ The std::thread constructor accepts any Callable, and the coroutine_ handle<> is

itself callable. Therefore, we could have written the function a bit more tersely as

 void await_suspend(
 std::experimental::coroutine_handle<> handle)
 {
 std::thread(handle).detach();
 }

² Observe that in the resume_ new_ thread example, it’s possible for the new thread to

start up and run to completion before our await_ suspend finishes. This is an example of

the race condition I cautioned about earlier.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

