
1/3

December 16, 2019

C++ coroutines: Short-circuiting suspension, part 2
devblogs.microsoft.com/oldnewthing/20191216-00

Raymond Chen

There’s one last section of the outline of compiler code generation for co_await that is

marked “We’re not ready to talk about this step yet.” Let’s talk about that step.

Before suspending the coroutine, the compiler asks the awaiter’s await_ready method.

This method returns true if the operation is already complete, or false if the coroutine

should suspend.

If the operation is already complete, then the compiler can avoid having to save the

coroutine’s state, only to load it back up again immediately.

 calculate x
obtain awaiter

co_await if (!awaiter.await_ready()) ⇐
{

save state for resumption
if (awaiter.await_suspend(handle))
{

return to caller

[Invoking the handle resumes execution here]
}

restore state after resumption
} ⇐
result = awaiter.await_resume();

 execution continues

In the case where await_ready says, “Yes, I’m ready!”, the compiler skips over the code

that saves the coroutine state, creates a continuation handle, suspends the coroutine, and

asks the await_ suspend to arrange for the coroutine’s continuation; and then when the

continuation occurs, restoring the coroutine state. Instead, it can go straight to the “So what

was the result?” This avoids a bunch of register spilling and reloading.

https://devblogs.microsoft.com/oldnewthing/20191216-00/?p=103217

2/3

The C++ language comes with a predefined awaiter known as suspend_ never . Its

await_ ready always returns true , which means that it never actually suspends. It

always goes straight to the continuation.¹

We can take advantage of the await_ ready method resume_ in_ any_ apartment

function:

template<typename Async,
 typename = std::enable_if_t<
 std::is_convertible_v<
 Async,
 winrt::Windows::Foundation::IAsyncInfo>>>
[[nodiscard]] auto resume_in_any_apartment(Async async)
{
 struct awaiter
 {
 bool await_ready()
 {
 return async.Status() ==
 Windows::Foundation::AsyncStatus::Completed;
 }

 void await_suspend(
 std::experimental::coroutine_handle<> handle)
 {
 async.Completed([handler](auto&&...) { handler(); });
 }

 auto await_resume()
 {
 return async.GetResults();
 }
 Async async;
 };
 return awaiter{ std::move(async) };
};

Perhaps a clearer example of this pattern is an awaitable which detects that its work is

unnecessary, such as this one which switches to the dispatcher’s thread:

3/3

auto ensure_dispatcher_thread(CoreDispatcher dispatcher)
{
 struct awaiter : std::experimental::suspend_always
 {
 CoreDispatcher dispatcher;

 bool await_ready() { return dispatcher.HasThreadAccess(); }

 void await_suspend(
 std::experimental::coroutine_handle<> handle)
 {
 dispatcher.RunAsync(CoreDispatcherPriority::Normal,
 [handle]{ handle(); });
 }
 };
 return awaiter{ {}, std::move(dispatcher) };
}

This awaitable resumes execution on the dispatcher’s thread. In the await_ ready , we

check if we are already on the dispatcher’s thread. If so, then we report that the co_await is

complete even before it started, and execution will continue without ever suspending.

Otherwise, the coroutine suspends, and we schedule its resumption on the dispatcher’s

thread.

¹ An awaiter that never suspends sounds really strange. After all, why bother even being a

coroutine! But it’s handy for cases in which you have to provide an awaiter even though

nothing is being awaited. We’ll see examples of this when we study the promise object at

some unspecified point in the future.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

