
1/4

December 24, 2019

C++ coroutines: The problem of the DispatcherQueue
task that runs too soon, part 2

devblogs.microsoft.com/oldnewthing/20191224-00

Raymond Chen

Last time, we discovered a race condition in C++/WinRT’s

resume_foreground(Dispatcher Queue) function when it tries to resume execution on a

dispatcher queue. Let’s try to fix it.

As a reminder, here’s where the problem is:

 bool await_suspend(coroutine_handle<> handle)
 {
 m_queued = m_dispatcher.TryEnqueue([handle]
 {
 handle();
 });
 return m_queued;
 }

The core of the problem is that the lambda may run to completion (which includes

destructing the awaiter) before await_suspend gets a chance to save the result of Try ‐

Enqueue() into m_queued , resulting in a store to a freed object.

We need to make sure the lambda waits for await_suspend to finish its work before the

lambda proceeds with the resumption of the coroutine.

We also need to be mindful that this is a rare race condition, so we want to keep things fast in

the common case.

This suggested to me that we should use a lightweight synchronization primitive, rather than

a heavy object like a kernel event. If we can solve the entire problem without taking a kernel

transition, that would be great.

So let’s start with a lightweight synchronization object: The single byte of memory whose

address can be waited on. (We’ve done this before.)

https://devblogs.microsoft.com/oldnewthing/20191224-00/?p=103262
https://devblogs.microsoft.com/oldnewthing/20191223-00/?p=103255
https://devblogs.microsoft.com/oldnewthing/20170614-00/?p=96395

2/4

struct slim_event
{
 slim_event() = default;

 // Not copyable
 slim_event(slim_event const&) = delete;
 void operator=(slim_event const&) = delete;

 bool signaled = false;

 void signal()
 {
 std::atomic_thread_fence(std::memory_order_release);
 WakeByAddressAll(&signaled);
 }

 void wait()
 {
 // Wait for "signaled" to be "not false" (i.e., true)
 bool False = false;
 while (!signaled) {
 WaitOnAddress(&signaled, &False, sizeof(False), INFINITE);
 }
 std::atomic_thread_fence(std::memory_order_acquire);
 }
};

We need to share this synchronization object between await_suspend and the lambda.

Where can we put it?

In the lambda.

In the await_ suspend function.

In neither: On the heap as a shared_ ptr .

I’m not going to make a new heap allocation for it, because that costs us part of the benefit of

using a lightweight synchronization primitive in the first place.

What about in the await_ suspend function?

The await_suspend function returns quickly, whereas the lambda may sit in the queue for

a long time before finally running. If we put the slim event in the await_suspend function,

it will have to wait for the lambda to be finished with the slim event before it can safely

destruct it and return.

That leaves the lambda. It’s okay to make the lambda wait for await_suspend , because it

won’t need to wait long, and most of the time it won’t need to wait at all.

What we want to be able to do is get the address of a variable that is sitting inside a lambda.

3/4

Let’s admit it: There’s no easy way to do it. (There are hard ways, though.)

I came up with this idea: As the lambda gets moved from the call site into the function

parameter, and then moved from the function parameter into the delegate, we make the

lambda keep track of where it has been moved to, and update a variable shared by reference.

Note that this requires that the lambda stop moving once it has been placed inside a delegate.

struct tracked_slim_event
{
tracked_slim_event(slim_event*& p)
 : tracker(p) { tracker = &value; }
tracked_slim_event(tracked_slim_event&& other)
 : tracker(other.tracker) { tracker = &value; }

slim_event*& tracker;
slim_event value;
};

The tracked_ slim_ event wraps a slim_ event but also manages a “tracker”, which

is a pointer that is set to point to the slim event when the object is created, and updated

whenever the object is moved. This lets you find the object’s final resting place.

Updating a constructor parameter is a sort of inversion of control: Instead of having a

method that tells you the answer upon request, you pass in the thing that receives the

answer, and the object updates it as the answer changes.

Now we can give the await_ suspend function access to the slim_ event hiding inside

the lambda.

 bool await_suspend(coroutine_handle<> handle)
 {
 slim_event* finder;
 bool result = m_dispatcher.TryEnqueue(
 [handle, tracker = slim_event_tracker(finder)] mutable
 {
 tracker.value.wait();
 handle()
 });

 m_queued = result;

 finder->value.signal();
 return result;
 }

We save the result of Try Enqueue into m_queued while we still can. Only after it has been

safely stored do we release the lambda by signaling the slim event.

4/4

This is a lot of work to address a race condition. And it turns out I missed a spot when listing

the various places we can keep the synchronization object. We’ll continue the discussion next

time.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

