
1/2

January 20, 2020

Can shrinking a std::string throw an exception?
devblogs.microsoft.com/oldnewthing/20200120-00

Raymond Chen

I had a C++ string that I wanted to truncate. Say, something like this:

void remove_extension(std::string& s)
{
auto pos = s.rfind('.');
if (pos != std::string::npos) {
 s.resize(pos);
}
}

The question is whether this function can throw an exception. Can the call to resize throw

an exception when used to make a string smaller?

And the answer appears to be yes, at least in C++17.

The specification of the resize(n) method in C++17 says that in the case where n <=

size() , “the function replaces the string designated by *this with a string of length n

whose elements are a copy of the initial elements of the original string designated by

*this .”

In other words, the resize(n) method, when shrinking a string (or leaving the size

unchanged), behaves as if a new string is created, which replaces the current string. And

creating a new string may throw bad_alloc .

Of course, implementations may use the as-if rule and resize the string in place, but the

standard does not require them to do so.

But wait, all is not lost. Because another way to shrink a string is to use the erase(n)

method.

[basic.string]: basic_string is a contiguous container.

[container.requirements.general] (11): Unless otherwise specified…, all container

types defined in this Clause meet the following additional requirements:

[container.requirements.general] (11.3): No erase() … function throws an

exception.

https://devblogs.microsoft.com/oldnewthing/20200120-00/?p=103349

2/2

[string.erase]: Throws: length_error if n > max_size() .

There are a few things referenced in the “…” portion of

[container.requirements.general] (11), but they do not apply to basic_string .

Hooray, we can use the erase method to shrink the string and avoid an exception.

void remove_extension(std::string& s)
{
auto pos = s.rfind('.');
if (pos != std::string::npos) {
 s.erase(pos);
}
}

Bonus chatter: It appears that the issue of resize() throwing an exception when

trimming was brought up¹ by Stephan T. Lavavej and fixed by Tim Song in P1148R0:

Starting in C++20, if you call the resize() method to shrink the string (or keep it the same

size), the behavior is defined in terms of erasure and therefore does not throw an exception.

¹ I could have written “raised” but I didn’t.²

² Except that I just did.

Raymond Chen

Follow

https://twitter.com/StephanTLavavej
https://github.com/timsong-cpp
https://wg21.link/P1148
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

