
1/2

January 29, 2020

Crashing in COM after I call CoUninitialize, how can COM
be running after it is uninitalized?

devblogs.microsoft.com/oldnewthing/20200129-00

Raymond Chen

A customer reported that they found a bug in shell32. The customer liaison forwarded the

question to the shell team, with the caution that since he is currently on vacation, he hadn’t

validated the legitimacy of the report, or its quality or correctness.

The customer was kind enough to reduce the program to its essence, and that made zeroing

in on the problem much easier.

#import "shell32.dll"

// Code in italics is wrong

void demonstrate_problem()

{

auto hr = CoInitialize(nullptr);

 Shell32::IDispatchPtr shell_application("Shell.Application");

 ... use the shell_application to do stuff ...

 CoUninitialize();

}

The customer’s analysis of the crash was rather lengthy, but hidden inside is this fragment:

If I remove the call to CoUninitalize , then the crash disappears, but from what I
understand, I’m doing everything by the rules. Once I Release all the COM pointers I own, I
have the right to call CoUninitialize .

Do you see the problem?

This is another case of paying attention to when your destructors run.

The shell_ application object is a smart pointer object, so it will release the raw COM

pointer at destruction. When does it destruct?

It destructs after the CoUninitialize call.

https://devblogs.microsoft.com/oldnewthing/20200129-00/?p=103380
https://devblogs.microsoft.com/oldnewthing/20131018-00/?p=2893
https://devblogs.microsoft.com/oldnewthing/20040520-00/?p=39243

2/2

The customer belived that they had Release all of their COM pointers at the point they

called CoUninitialize , but in fact they hadn’t. There was an unreleased COM pointer

inside the shell_ application object, as well as other objects in the code I elided.

The fix is to ensure that everything is properly released before uninitializing COM. One way

is to force the destruction of all relevant objects by introducing a nested scope:

void demonstrate_problem()

{

auto hr = CoInitialize(nullptr);

{ // nested scope

 Shell32::IDispatchPtr shell_application("Shell.Application");

 ... use the shell_application to do stuff ...

} // force smart objects to destruct

CoUninitialize();

}

Another is to put the initialize of COM into its own RAII object, so that it destructs last.

void demonstrate_problem()

{

 CCoInitialize init;

 Shell32::IDispatchPtr shell_application("Shell.Application");

 ... use the shell_application to do stuff ...

 // CoUninitialize();

}

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/20040520-00/?p=39243
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

