
1/2

March 9, 2020

Why does MS-DOS put an int 20h at byte 0 of the COM file
program segment?

devblogs.microsoft.com/oldnewthing/20200309-00

Raymond Chen

The MS-DOS .com file format is very simple: It just a memory dump of the 16-bit address

space starting at offset 0100h , and continuing for the size of the program.

The memory below 0100h also had a specific format, known as the Program Segment

Prefix. There’s a lot of stuff in there, but the stuff that’s interesting for today’s discussion are

the following:

At offset 0000h is an int 20h instruction.

At offset 0005h is a jmp instruction.

At offset 005Ch is a file control block that contains the first command line argument,

parsed as if it were a file name.

At offset 006Ch is a file control block that contains the second command line

argument, parsed as if it were a file name.

At offset 0080h is the command line.

The int 20h is the “exit program” system call. One theory is that it is placed at offset

0000h so that if execution runs off the end of the code segment, the instruction pointer will

wrap back around to zero, and then the program will terminate.

An interesting theory, but unlikely. The odds of execution running harmlessly off the end of

the code segment are slim to none.

These specific bytes are significant because they line up exactly with how CP/M organized its

zero page. Keeping these important addresses the same made it easier to port CP/M

programs to MS-DOS.

And CP/M put the “exit program” system call at offset 0000h because it started each

program with 0000h on the stack. If the program executed a ret instruction, it would

return back to zero, and exit the program. Just like if you do a return from main .

https://devblogs.microsoft.com/oldnewthing/20200309-00/?p=103547

2/2

And although int 21h was the primary system call for MS-DOS, it supported the CP/M

system call address: call 0005h . To further ease the porting effort from CP/M to MS-DOS,

MS-DOS chose system call function codes to match the CP/M function codes.

In other words, the int 20h is at offset 0000h for backward compatibility with CP/M.

Bonus chatter: The CP/M history also calls out how unlikely it is for execution to run off

the end of the segment and wrap around. In order for that to happen, it would have to

somehow execute through the operating system itself, because CP/M put the operating

system at the highest available address. (Also, the highest available address may not be

0xFFFF because the system could very well have less than 64KB of memory.)

Follow-up: Commenter Jim Nelson points out that this jump instruction deserves an entire

article by itself, and fortunately he also provided a link to that article. It’s a wild tale of

deception, lies, and the A20 line.

Raymond Chen

Follow

https://twitter.com/_jimnelson_
https://devblogs.microsoft.com/oldnewthing/20200309-00/?p=103547#comment-136371
http://www.os2museum.com/wp/who-needs-the-address-wraparound-anyway/
https://devblogs.microsoft.com/oldnewthing/20120206-00/?p=8373
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

